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Deep generative autoencoder for low-dimensional 
embeding extraction from single-cell RNAseq data 
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Abstract—Single-cell RNA sequencing (scRNAseq) can 
reveal biological diversity at the cellular level that are 
unexplored by bulk RNA sequencing (RNAseq), but they 
suffer from the excessive zero expression counts and the 
limitation of the scalability in practice. Here, we propose a 
non-linear generative autoencoder based method, scSVA, 
relying on an integration of variational autoencoder and 
dropout imputations. Specifically, scSVA automatically 
identifies the dropouts and recovery these values only to avoid 
introducing new biases. Then, scSVA utilizes stochastic 
optimization and deep neural network to extract the low-
dimensional embedding from gene expression levels. We 
illustrate the benefits of scSVA through in-depth real analyses 
of six published scRNAseq data sets. scSVA is up to 1.3 times 
more powerful cell clustering accuracy than existing 
approaches. The high power of scSVA allows us to identify 
new cell types that reveal new biology from scRNAseq data 
that otherwise cannot be revealed by existing approaches. 

Keywords—Dimensionality reduction; Cell types; Single 
cell; Variational autoencoder 

I. INTRODUCTION  
Single-cell RNA sequencing (scRNAseq) technologies 

are now emerging as a powerful tool to  characterize the 
cellular composition of complex tissues [1-4]. Unlike 
traditional RNA sequencing (i.e., bulk RNA sequencing, 
bulk RNAseq) [5-7] that profiles the gene specific 
expression levels within hundreds to tens of thousands of 
single cells, scRNAseq quantifies the gene specific 
expression levels within individual cells [8-10]. When 
thousands of genes are simultaneously profiling in 
individual cells, their expression levels are usually involved 
unwanted technical variation effects, such as technical noise 
or confounding factors, which probably is due to extremely 
low number of mRNA transcripts in each cell or the 
stochastic nature of gene expression [11-13]. In addition, 
current scRNAseq technologies allow to process tens of 
thousands of cell simultaneously [14]. The increasing 
number of cells -- generates the extremely large scRNAseq 
data sets, poses big challenges to the existing methods and 
computing resources in downstream analyses [15, 16], such 
as dimensionality reduction (DR) [17] analysis, cell 
clustering analysis [18]. 

To overcome these challenges, over 100 analytic tools 
have been developed in terms of DR analysis in the past few 
years [19]. DR is an indispensable analytic task for 
scRNAseq data analysis. A recent survey study, which 
compared 18 DR methods or matrix factorization methods 
on 30 publicly available scRNAseq data sets, shows that the 
simplest or generic DR methods, such as principal 
component analysis (PCA) [20] and factor analysis (FA) 
[21], work reasonably well based on the average 
performance across all data sets; the non-generic DR 
method zero-inflated negative binomial-based wanted 
variation extraction (ZINB-WaVE) [22] was proposed to 
directly model the count nature of scRNAseq data using 
zero-inflated negative binomial model, but this method 

meets the computationally challenging when sample size is 
large; uniform manifold approximation and projection 
(UMAP) [23] is a Riemannian geometry based non-linear 
DR method that projecting the high-dimension gene 
expression into low-dimension feature space, but it is unable 
to properly deal with the technical variations. In recent years, 
deep learning-based DR methods have shown superior 
performances in scRNAseq data analysis, especially in 
terms of ability of denoising and computation burden 
reducing [24]. For example, deep count autoencoder 
network (DCA) [25] is a deep learning based DR method 
that  denoising scRNA-seq data can remove technical 
variation, but it may lead to over-imputation in case of 
inadequate hyperparameter choices; and other deep learning 
-based DR methods for scRNAseq data analysis include 
deep variational autoencoder for scRNA-seq data (VASC) 
[26], scvis [27], scNBMF [28], and scScope [29], to name a 
few. 

Here, we developed a deep generative model based 
method, scSVA, to extract biologically meaningful low-
dimensional embedding and visualize the cell distribution of 
scRNAseq data. In this method, we are using a variational 
autoencoder network in a completely unsupervised manner 
and so do not require labeled data. scSVA first imputes the 
scRNAseq data with an imputation method scImpute [30], 
by fitting a mixed model of each cell type to recover 
transcriptome dynamics masked by dropouts. Then, with 
recovered scRNAseq data, scSVA  was trained via Bayesian 
inference with unsupervised fashion of deep learning model. 
scSVA can capture non-linear variations and automatically 
learn a hierarchical representation of the data. To illustrate 
the benefits of scSVA, we also compared the performance 
of scSVA with three generic DR methods, PCA, UMAP and 
t-SNE [31], and four bespoke single cell DR methods VASC, 
ZINB-WaVE, DCA and SIMLR [32]. From the results, we 
can concluded that scSVA shows obvious advantages, and 
also confirms the effectiveness of our method for extracting 
feature information from scRNAseq data. 

II. METHODS 

A. Variational Autoencoder 
The variational autoencoder is a multi-layer perceptron 

neural network that destructs the gene expression matrix X 
into a latent variable z and then uses the latent variable z to 
reconstruct the input gene expression matrix X. In this 
model, when we used the variational self-encoder model for 
dimensionality reduction, we mainly focus on the 
generation of the potential representation variable z in its 
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low-dimensional space, so that it can highly restore the 
original data matrix X. The main advantage of this approach 
is that the model can learn the inherent or characteristic 
information of the original data in a completely 
unsupervised manner. theoretically, the best choice for 
generating z is the posterior distribution P(z|X), but it is 
usually too complicated and difficult to handle. The 
variational autoencoder attempts to approximate it using the 
variable probability Q(z|X), which is optimized to minimize 
the KL divergence [33] between Q(z|X)  and P(z|X) . 
Combining unsupervised variational automatic coding 
Bayesian inference, the neural network did not learn the 
unconstrained representation of the scRNAseq data, but 
imposed regularization constraints. By applying Bayes rules 
and rearranging the order, you can rewrite it as: 

logP(X) − [Q(z|X)||P(z|X)]
= ~ [ ( | )]
− D[Q(z|X)||P(z)] 

(1) 

where P(X) is a constant, so minimizing the KL divergence 
is equivalent to maximizing the right side of the above 
equation. Although the model is fully trained, we are 
actually interested in the potential vector z representation of 
the data because it represents the key information needed to 
accurately reconstruct the input. 

( || ) = ( )
( )
( )

 (2) 

The above formula represents the KL divergence of  
to , where ( )and ( ) are two probability distributions 
of the value . The KL divergence, also known as relative 
entropy, is an asymmetry measure of the difference between 
two probability distributions.  

B. scSVA 
scSVA was developed based variational autoencoder for 

scRNAseq data analysis, which was designed for 
visualization of scRNA-seq data and unsupervised low-
dimensional extraction analysis. The workflow of scSVA is 
given in Figure 1a. scSVA includes four layers: imputation 
layer, standardized layer, coding network, latent layer, 
decoding layer, and recovered layer. 

1) The imputation layer used the expression matrix from 
scRNA-seq data as inputs, and the dropout probability is set 
to a threshold of 0.5. First, by fitting a mixed model to learn 
the dropout probability of each gene in each cell, the missing 
information in the cell is estimated by borrowing 
information from the same gene in other similar cells. This 
layer interpolates and fills some missing information in the 
single-cell genetic data to improve the performance of 
subsequent model learning. 

2) The standardized layer added immediately after the 
imputation layer , and consists of neuron nodes, the number 
of nodes being equal to the number of genes in each cell we 
are dealing with. Logarithmic transformation of the data to 
make the results more robust, then re-adjust the expression 
of each gene in any single cell by [0, 1] by dividing by the 
maximum expression of its own cells. 

3) In the coding layer, we used four intermediate layers with 
1024, 256, 64 and 16 nodes and a two-dimensional potential 
sampling layer. We use the Batch Normalization (BN) [34] 
method in all layers, which normalizes the data to the same 

 
Fig. 1. (a) overview of scSVA method. scSVA consists of four parts: 1) the imputation layer; 2) the encoder network; 3) the decoder network; and 4) 
the recovered layer. Both the encoder and decoder networks are designed as four-layers fully connected neural networks. (b) The selection of optimization 
algorithms for network training. 
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distribution, while reducing the risk of overfitting, which 
makes the training process in the model learning process 
more effective. At the same time we used the rectification 
linear unit (ReLu) activation function in all layers, but we 
used the sigmoid activation function in the last layer. 
However, in the first layer, non-linear activation is not used, 
so that it acts as an embedded PCA transform, and the L1 
norm regularization is added to the weights in the layer, 
which is targeted punishment for the sparsity of the model. 

4) In the latent sampling layer, there is an average variable 
μ and a variance variable σ, which can produce a two-

dimensional latent variable z. In this model, two potential 
variables are sufficient to obtain the inherent information or 
feature information of the original expression data matrix. 
Increasing this number does not improve the results, so all 
subsequent analyses are based on this two-dimensional 
representation. Because neural networks cannot have 
random layers, this cannot be solved by backpropagation 
algorithms, using reparameterization techniques to 

 
Fig. 2. Visualize the scRNA-seq data set of embryonic cells. Each point represents a cell. Different cell types are marked by different colors 
and shapes. It can be seen that the scVAE method achieves better performance for cell cluster separation than the other seven DR methods 
for each scRNAseq data set. 
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eliminate the randomness of the input. The latent layer and 
the coding layer form the Encoder network 

5) In the decoding layer, the original expression matrix is 
restored at the decoder network using the z generated by the 
potential sampling layer, and a four-layer fully connected 
neural network with nodes of 16, 64, 256 and 1024 and an 
output layer are designed. The first three layers are activated 
with 'ReLU' and the last layer uses the sigmoid activation 
function. The decoding layer is the Decoder network in 
Figure 1a. 

6) In the recovered layer, we added the ZI function adapted 
from the ZIFA [35] model. We simulated the dropout event 

 by probability, where  is the expression value of the 
decoder network recovery. Since backpropagation cannot 
handle random units, it cannot handle discrete units at the 
same time. The Gumbel-softmax distribution was 
introduced to address these difficulties. Assuming the drop 
probability p, q = 1 − p , samples from the Gumbel-
softmax distribution are obtained by: 

 
Fig. 3. Visualize scRNAseq data setsof the embryonic stem cells. Each point represents a cell. Different cell types are marked by different 
colors and shapes. It can be seen that the scVAE method achieves better performance for cell cluster separation than the other seven DR 
methods 
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s =
exp ( + )

exp + + exp ( + )
 (3) 

whereg ,  are sampled from the Gumbel(0,1) distribution. 
The sample can then be obtained by first drawing 
u~Uniform(0,1) and then calculating g = −log (−log u). 
As a hyperparameter τ → 0, the generated samples from the 
Gumbel-softmax distribution should be identical to the 
samples from the Bernoulli distribution. In fact, too small a 
τ will make the gradient too small and the optimization 
algorithm will not work. Our experiments show that it is 
better to set τ between 0.5 and 1 for a small sample size data 
set. For data sets with more cells, the annealing strategy can 
achieve better results. 

The loss function shown in equation (2) consists of two 
components. Due to the [0,1] ratio of our data, the first part 
is calculated by the binary cross entropy loss function. In the 
second part, the difference between the control posterior 
distribution and the previous N(0,1) can be calculated by 
analysis. 

log p(x) = L(∅, θ; x) + ( ∅( | )|| ( | )) (4) 

The likelihood L can be decomposed as following: 

L(∅, θ; x) = ~ ∅( | ) log ( | )
− ( ∅( | )|| ( | )) 

(5) 

where the first term can be considered as a typical 
reconstruction loss inherent to all autoencoders, and the 
second term can be considered as a penalty that forces the 
coded representation to follow the Gaussian prior 
(regularization part).  

= +  (6) 

where  is the Gaussian noise, Using  we do not need to 
sample from the latent layer and so the model is 
differentiable and RMSprop optimization algorithm [36] 
can be used to learn model parameters. Using RMSprop, we 
set the learning rate to 0.0005 to ensure that all test data sets 
converge. It relies on variants of random small batch 
gradient drops to minimize the likelihood L. In RMSprop, 
the learning rate weight is divided by the running average of 
the recent gradient of the weight, resulting in better 
convergence. If the training loss does not decrease 
significantly within 100 epochs, the training process will be 
stopped. 

C. Comparison and evaluation method 
For each data set, we considered seven DR methods 

PCA, t-SNE, SIMLR, UMAP, DCA, ZINB-WaVE  and 
VASC  for comparison. The same data preprocessing 
method is used for all methods. For PCA and t-SNE, we use 
the built-in python sklearn package function. For the UMAP, 
DCA and VASC method we used python packages. For the 
SIMLR and ZINB-WaVE method we used R packages from 
Bioconductor for DR. For the benchmarking of different DR 
methods, we used the clustering method k-means to group 
the cells into different cell types based on reduced 
dimension obtained by different DR methods. We utilized 
two criteria NMI and ARI to evaluate the performance of 
different DR methods: 

 Normalized mutual information (NMI) [17]: 

 

NMI(P, T) =
2 ( , )

( ) ( )
 (7) 

where = ( , ,∙∙∙, )  denotes the inferred cell-type 
cluster labels from clustering analysis while =
( , ,∙∙∙, )  denotes the known true cell-type labels for  
samples in the data 

 Adjusted rand index (ARI) [37]:  

ARI( , L)

=
∑ − ∑ ∑ /

1
2 ∑ + ∑ − ∑ ∑ /

 (8) 

where  and  are the predicted cell type labels and the 
true cell type labels, respectively;  and  are the 
predicted cluster number and the true cluster number, 
respectively;  denotes the number of cells assigned to a 
specific cluster  ( = 1,2,∙∙∙, ); similarly  denotes the 
number of cells assigned to cluster  ( = 1,2,∙∙∙, );  
represents the number of cells shared between cluster  and 
; and  is the total number of cells. 

D. Six public scRNAseq data sets 
Six publicly available scRNAseq data sets were got 

from six studies: 
 The biase [38] data set, the deng [39] data set, and 

the goolam [40] data set were developing mouse 
embryonic cells that have been studied for 
embryonic development from fertilized egg cells to 
embryonic cells. 

 The kolodziejczyk [41] data set is a mouse 
embryonic stem cell grown under three different 
conditions. The klein [42] data set is a mouse 
embryonic stem cell at four different growth stages. 

 The pollen [43] data set was a developing human 
cerebral cortical cell that has been sequenced in 11 
different cell states. 

III. RESULT 

A. Model selection 
The first experiment we conducted was a neural network 

optimizer that chose a single-cell variational autoencoder 
model. In order not to lose generality, we chose the human 
brain scRNAseq data set. As shown in Figure 1b, five 
optimization methods were compared to optimize the neural 
networks, namely RMSprop, Adam, Adagrad, Adadelta and 
SGD. The results show that the RMSprop method is 
superior to other optimization methods when we choose 
NMI or ARI. Therefore, in the following experiments, we 
will choose the RMSprop method to optimize the neural 
network. 

B. Six public scRNAseq data sets 
We performed eight DR methods on six publicly 

available scRNAseq real data sets, three mouse scRNAseq 
data sets that are developing embryonic cells, two mouse 
scRNAseq data sets that are embryonic stem cells in 
different growth states, and one human scRNAseq data set 
that is cerebral cortical cells. Detailed cell type information 
for six scRNAseq data sets was reported in the original 
study. For comparison, we compared seven existing DR 
methods available, PCA, t-SNE, SIMLR, UMAP, DCA, 
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ZINB-WaVE and VASC. In order to effectively evaluate 
the performance of different DR methods, we performed the 
same pre-processing procedure on the each data set and 
finally processed them into a two-dimensional embedding. 
Finally, using k-means clustering method, repeated 100 
times to test each method in the extraction of single-cell data 
feature information can be strong, the performance of 
different DR methods was evaluated by NMI and ARI. 

Tables Ⅰ and Ⅱ show the comparison of scVAE with the 
other seven DR methods. It can be seen that scVAE method 
shows more accurate cell type detection results than the 
other seven DR methods. Specifically, for the NMI criteria, 
the results of the scVAE evaluation on the data sets biase, 
deng, goolam, klein, kolodziejczyk, and pollen were: 1.00, 
0.76, 0.92, 0.85, 0.70, 0.96. For the ARI standard, the results 
of the scVAE evaluation were 1.00, 0.46, 0.90, 0.89, 0.68, 
0.95 on the data sets biase, deng, goolam, klein, 
kolodziejczyk and pollen, respectively.  

In order to further compare the feature extraction of 
scSVA with the other seven DR methods, we show the two-
dimensional spatial representation of the two-dimensional 
spatial representation data processed by the eight DR 
methods on six scRNAseq data sets, as shown in Figures 3 
and 4. 

For the developing mouse embryonic scRNAseq data 
set biase, goolam, and deng studied the embryonic 
development process from fertilized eggs to blast cells, as 
shown in Figure 3. It can be seen that in the biase data set 
which has less data, the clustering of t-SNE is sparse and the 
visualization effect is the worst. In the DCA method, 
multiple types of cells are confused and cannot be identified. 
The UMAP method clearly differentiates cells into three 
categories, failing to distinguish between the two types of 
cells, 4Cell and Blast. In the Deng data set, other methods 
have different degrees of cluster confusion, and more than 
two types of cells are mixed in at least two types of clusters. 
In the Goolam data set, the rest of the methods show the 
characteristics of cluster sparseness. t-SNE and SIMLR, 
both of which use neighbor preserving embedding, showed 
poor results on these datasets. In these three data sets, 
scSVA clustering visualization has obvious advantages, 
indicating that the scSVA method can better simulate cell 
development status during embryonic development than the 
other seven DR methods. 

TABLE I.  COMPARED ALL METHODS (NMI) 

dataset biase deng goolam klein kolodziejczyk pollen 

PCA 0.92 0.68 0.7 0.71 0.43 0.8 

t-SNE 0.85 0.69 0.64 0.54 0.56 0.61 

SIMLR 0.86 0.59 0.53 0.24 0.62 0.92 

UMAP 1.0 0.74 0.73 0.69 0.65 0.81 

ZINB-WaVE 1.0 0.71 0.74 0.83 0.58 0.82 

DCA 0.55 0.59 0.45 0.74 0.26 0.68 

VASC 1.0 0.66 0.43 0.52 0.21 0.62 

scSVA 1.0 0.76 0.92 0.85 0.69 0.96 

TABLE II.  COMPARED ALL METHODS (ARI) 

dataset biase deng goolam klein kolodziejczyk pollen 

PCA 0.92 0.44 0.52 0.72 0.38 0.69 

t-SNE 0.8 0.43 0.46 0.47 0.56 0.22 

SIMLR 0.87 0.3 0.45 0.32 0.59 0.85 

UMAP 1.0 0.55 0.54 0.66 0.56 0.7 

ZINB-WaVE 1.0 0.44 0.55 0.83 0.58 0.7 

DCA 0.47 0.37 0.41 0.73 0.21 0.53 

VASC 1.0 0.4 0.28 0.47 0.14 0.41 

scSVA 1.0 0.46 0.9 0.89 0.68 0.95 

In the data set kolodziejczyk, the differentiation of 
embryonic stem cells under the growth conditions of serum, 
2i and alternative 2i was studied. The data set was used to 
study the differentiation of embryonic stem cells at different 
times of d0, d2, d4 and d7. It can be seen that t-SNE, ZINB-
WaVE, and scSVA have better effects. In the data set pollen, 
human developmental cerebral cortical cells were observed. 
It can be seen that in the pollen data set with the most cluster 
type of cells, although SIMLR forms the most compact 
cluster, it can be seen that more than one type of cells are 
contained in its multiple clusters. The klein data set has 
more data than others. PCA, DCA, and ZINB-WaVE 
isolated the cell population of most different growing 
batches, but erroneously grouped cells under d2 and d4 
conditions. scSVA separates most cell populations while 
maintaining their relative position. In the three data sets, the 
same type of cell clustering of scSVA is relatively tight, and 
there is no mixed clustering phenomenon of multiple cell 
types appearing in the other seven methods, as shown in 
Figure 4. 

IV. CONCLUSION 
In this paper, we present an new variational autoencoder 

method that integrates the imputation and low-dimensional 
embedding extraction to analyze the scRNAseq data with 
unsupervised manner. Using the scSVA method, we can 
extract the characteristic information in low-dimensional 
space from the scRNAseq data to effectively detect the cell 
type, so that there are further biological processes for 
understanding embryonic development and cell 
differentiation. We have experimentally tested the 
effectiveness of the scSVA method in the process of 
reducing the dimensionality of scRNAseq data, as well as 
for different data sets with different data structures in the 
original space. On the six publicly available data sets, the 
NMI and ARI performance evaluations show their powerful 
performance compared to the seven existing DR methods. 

One advantage of this method is that it can better deal 
with the dropout events of the scRNAseq data set. We 
integrate the imputation method in the neural network to 
correct the dropouts of the input data, and accurately 
estimate the dropout in the scRNAseq data without 
introducing new deviations. 

scSVA method performs efficient feature extraction on 
high-dimensional scRNAseq data, and obtains low-
dimensional embeddings in its potential space, which 
provides an effective means for biological research. In this 
study, we mainly conducted experiments on cell type 
detection. In future research, we should not only study its 
effect on single-cell clustering, but also apply to cell 
differentiation trajectories and detect differential gene 
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expression. This can also be used in future work to identify 
key mutant genes associated with the evolution of 
organisms. 
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