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a b s t r a c t

In this paper, relations between a multiplicative consistent interval fuzzy preference relation and an addi-
tive consistent interval fuzzy preference relation are established. Based on the new relations, a new
method (Algorithm 3) is proposed to derive interval weights by transforming a multiplicative consistent
interval fuzzy preference relation into an additive consistent interval fuzzy preference relation, collecting
additive consistent information (Algorithm 2), transforming back into multiplicative consistent informa-
tion and calculating the interval weights by Eq. (20). Finally, two numerical examples are given to illus-
trate the new method.

� 2011 Elsevier B.V. All rights reserved.
1. Introduction

Multiple attribute decision making (MADM) is used to deal with
the problems of finding a desirable solution from a finite set of fea-
sible alternatives assessed on multiple attributes [1–7]. One key of
MADM is deriving the attributes’ weights which can be divided
into subjective weights, objective weights and combination
weights. In this paper, subjective weights which reflect decision
makers (DMs)’ preferences will be discussed. As it is known, both
fuzzy preference relation (FPR) and reciprocal preference relation
(RPR) [8,9] are used to express decision makers preferences. Since
the analytic hierarchy process (AHP) was proposed by Saaty in the
middle of the 1970s, deriving weights from DMs’ preferences has
attracted researchers’ interest. For example, Saaty [10] firstly pro-
posed the well-known eigenvector method (EM) to derive weights
from a multiplicative preference relation. Then, logarithmic least-
squares method (LLSM) [11], gradient eigenweight method
(GEM) [12], geometric least-squares method (GLSM) [13] and log-
arithmic goal programming method (LGPM) [14] were developed
for a multiplicative preference relation. Besides, to derive weights
from a FPR, Fernandez and Leyva [15] proposed a multi-objective
optimization method, Xu [16] developed a goal programming
model, and so on.

However, DMs may not exactly estimate their preferences with
numerical values, it is natural and easy for DMs expressing their
ll rights reserved.
preference information with interval numbers due to the increas-
ing complexity and uncertainty of real-life decision making prob-
lems [17]. In this case, both interval fuzzy preference relation
(IFPR) and interval reciprocal preference relation (IRPR) are useful
to express DMs’ uncertain preferences. So, deriving interval
weights from interval preference relations is the key of multiple
attribute decision making problems. Up to now, Lan et al. [18] pro-
posed an information mining method to derive weights from an
interval comparison matrix. Wang et al. [19] developed an ap-
proach generating interval weights based on consistency test. Xu
and Chen [17] established some models for deriving interval
weights from IFPR. Genc et al. [20] proposed a new method by
adjusting elements of the IFPR. In short, almost all the research ob-
tain interval weights by establishing mathematical models. This
paper is focused on deriving interval weights by collecting all the
multiplicative consistent information. To do that, some exchanges
between an additive consistent FPR and a multiplicative consistent
FPR are established based on both relations between a consistent
reciprocal preference and a multiplicative consistent FPR proposed
by Xu [3] and relations between a consistent reciprocal preference
and an additive consistent FPR proposed by Lan [4]. Then, the rela-
tions are extended to a multiplicative consistent IFPR and an addi-
tive consistent IFPR. Based on the extended relations, a new
method (Algorithm 3) will be proposed to derive interval weights
from an IFPR, no matter whether it is multiplicative consistent or
not, by transforming a multiplicative consistent IFPR into an addi-
tive consistent IFPR, collecting additive consistent information
(Algorithm 2), transforming back into multiplicative consistent
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information and calculating the interval weights by Eq. (20). Final-
ly, there are two numerical examples to illustrate the new method.

2. Preliminaries

Consider a certain multiple criteria decision making problem
with a finite set of n criteria, let X = {x1,x2, . . .,xn} be the set of cri-
teria and let I = {1,2, . . .,n} be the set of index. A decision maker
compares each pair of criteria in X, and provides his/her preference
degree aij of the criterion xi over xj. All these preference degrees aij

(i, j 2 I) compose a FPR A = (aij)n�n

A ¼

a11 a12 � � � a1n

a21 a22 � � � a2n

..

. ..
. ..

. ..
.

an1 an2 � � � ann

266664
377775:
Definition 1 [21]. A fuzzy preference relation on a finite set X with
n P 1 elements is represented by a complementary matrix
A = (aij)n�n with

aij P 0; aij þ aji ¼ 1; aii ¼ 0:5; 8i; j 2 I; ð1Þ

where aij represents a crisp preference degree of criterion xi over xj

provided by the decision maker. Especially, aij < 0.5 indicates that xj

is preferred to xi; aij = 0.5 indicates indifference between xi and xj;
aij > 0.5 indicates that xi is preferred to xj.
Definition 2 [1]. A reciprocal preference relation R on a finite set X
with n P 1 elements is represented by a reciprocal matrix
R = (rij)n�n with

rij > 0; rij � rji ¼ 1; rii ¼ 1; 8i; j 2 I; ð2Þ

where rij indicates that xi is rij times as important as xj. Especially,
rij < 1 indicates that xj is preferred to xi; rij = 1 indicates indifference
between xi and xj; rij > 1 indicates that xi is preferred to xj.
Definition 3 [22]. A fuzzy preference relation A = (aij)n�n is called
an additive consistent fuzzy preference relation, if the following
additive transitivity is satisfied

aij ¼ aik � ajk þ 0:5; 8i; j; k 2 I: ð3Þ
Definition 4 [22]. A fuzzy preference relation B = (bij)n�n is called a
multiplicative consistent fuzzy preference relation, if the following
transitivity is fulfilled

bij � bjk � bki ¼ bik � bkj � bji; 8i; j; k 2 I: ð4Þ

Let w = (w1,w2, . . .,wn)T be the vector of priority weights, with
wi P 0 (i 2 I),

Pn
i¼1wi ¼ 1: Then the multiplicative consistent fuzzy

preference relation B can be given by Xu [2]

bij ¼
wi

wi þwj
; 8i; j 2 I: ð5Þ
Definition 5 [23]. A reciprocal preference relation R = (rij)n�n is
called a consistent reciprocal preference relation, if the following
transitivity is satisfied

rij ¼ rik � rkj; 8i; j; k 2 I: ð6Þ
Lemma 1 [3]. Let R = (rij)n�n be a consistent reciprocal preference
relation, a multiplicative consistent fuzzy preference relation B =
(bij)n�n will be generated through the following transformation
bij ¼
1

1þ rji
; 8i; j 2 I: ð7Þ
Lemma 2 [3]. Let B = (bij)n�n be a multiplicative consistent fuzzy
preference relation, a consistent reciprocal preference relation
R = (rij)n�n will be generated through the following transformation

rij ¼
bij

bji
; 8i; j 2 I: ð8Þ
Lemma 3 [4]. Let R = (rij)n�n be a consistent reciprocal preference
relation, an additive consistent fuzzy preference relation A = (aij)n�n

will be generated through the following transformation

aij ¼ 0:5þ logarij; 8i; j 2 I; a > max
i;j2I

rij

� �2

: ð9Þ
Lemma 4 [4]. Let A = (aij)n�n be an additive consistent fuzzy prefer-
ence relation, a consistent reciprocal preference relation R = (rij)n�n

will be generated through the following transformation

rij ¼ baij�0:5; 8i; j 2 I; b > 1: ð10Þ

Lemmas 1 and 2 reflect the relations between a consistent reci-
procal preference relation and a multiplicative consistent fuzzy
preference relation and Lemmas 3 and 4 reflect the relations be-
tween a consistent reciprocal preference relation and an additive
consistent fuzzy preference relation. The relations, between an addi-
tive consistent fuzzy preference relation and a multiplicative consis-
tent fuzzy preference relation, can be easily achieved as follows.
Theorem 1. Let A = (aij)n�n be an additive consistent fuzzy preference
relation, a multiplicative consistent fuzzy preference relation B =
(bij)n�n can be achieved through the following transformation

bij ¼
1

1þ baji�0:5 ; 8i; j 2 I;b > 1: ð11Þ
Proof. Since A = (aij)n�n is an additive consistent fuzzy preference
relation, according to Lemma 4, R = (rij)n�n is a consistent reciprocal
preference relation, where rij ¼ baij�0:5 ð8i; j 2 I; b > 1Þ: According
to Lemma 1, B = (bij)n�n is a multiplicative consistent fuzzy prefer-
ence relation, where

bij ¼
1

1þ rji
¼ 1

1þ baji�0:5 ; 8i; j 2 I; b > 1: �
Theorem 2. Let B = (bij)n�n be a multiplicative consistent fuzzy pref-
erence relation, an additive consistent fuzzy preference relation
A = (aij)n�n can be achieved through the following transformation

aij ¼ 0:5þ loga
bij

bji
; 8i; j 2 I; a > max

i;j2I

bij

bji

� �2

: ð12Þ
Proof. Since B = (bij)n�n is a multiplicative consistent fuzzy prefer-
ence relation, according to Lemma 2, R = (rij)n�n is a consistent reci-

procal preference relation, where rij ¼
bij

bji
ð8i; j 2 IÞ. According to

Lemma 3, A = (aij)n�n is an additive consistent fuzzy preference
relation, where

aij ¼ 0:5þ logarij ¼ 0:5þ loga
bij

bji
; 8i; j 2 I; a > max

i;j2I

bij

bji

� �2

: �

From the above two theorems, we can see that, for an additive
consistent fuzzy preference relation A = (aij)n�n and a multiplicative
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consistent fuzzy preference relation B = (bij)n�n, when a = b, Eq.
(11) is the sufficient and necessary condition of Eq. (12).

As the increasing of the complexity and uncertainty of real-life,
DMs can hardly estimate their preferences with numerical values,
but with fuzzy set, especially with interval numbers. From this
point, a decision maker compares each pair of criteria in X, and pro-

vides his/her interval preference degree ~aij ¼ a�ij ; a
þ
ij

h i
of the crite-

rion xi over xj, where ãij indicates that the criterion xi is between
a�ij and aþij times as important as the criterion xj. All these interval

preference degrees ~aij ði; j 2 IÞ compose an IFPR eA ¼ ð~aijÞn�n.

eA ¼
a�11; a

þ
11

� �
a�12; a

þ
12

� �
� � � a�1n; a

þ
1n

� �
a�21; a

þ
21

� �
a�22; a

þ
22

� �
� � � a�2n; a

þ
2n

� �
..
. ..

. ..
. ..

.

a�n1; a
þ
n1

� �
a�n2; a

þ
n2

� �
� � � a�nn; a

þ
nn

� �

26666664

37777775;

where ~aij ¼ a�ij ; a
þ
ij

h i
; a�ij þ aþji ¼ 1; a�ii ¼ aþii ¼ 0:5; aþij P a�ij > 0, for

all i, j = 1,2, . . .,n.

Definition 6 [17]. Let eA ¼ ð a�ij ; a
þ
ij

h i
Þn�n be an IFPR. If there exists

an additive consistent FPR A = (aij)n�n, such that

a�ij 6 aij 6 aþij ; 8i; j 2 I;

then, eA is called an additive consistent IFPR and A = (aij)n�n is called
additive consistent information in eA.
Definition 7 [17]. Let eB ¼ b�ij ; b
þ
ij

h i� �
n�n

be an IFPR. If there exists

a multiplicative consistent FPR B = (bij)n�n, such that

b�ij 6 bij 6 bþij ; 8i; j 2 I;

then, eB is called a multiplicative consistent IFPR and B = (bij)n�n is
called multiplicative consistent information in eB.

The relationship between an additive consistent IFPR and mul-
tiplicative consistent IFPR can be developed as follows.

Theorem 3. Let eA ¼ a�ij ; a
þ
ij

h i� �
n�n

be an additive consistent IFPR. A

multiplicative consistent IFPR eB ¼ b�ij ; b
þ
ij

h i� �
n�n

can be achieved

through the following transformation

b�ij ¼
1

1þ baþ
ji
�0:5

; bþij ¼
1

1þ ba�
ji
�0:5 ; 8i; j 2 I; b > 1: ð13Þ
Proof. Since eA ¼ ð½a�ij ; aþij �Þn�n is an additive consistent IFPR, accord-
ing to Definition 6, there exists an additive consistent FPR A =
(aij)n�n, such that a�ij 6 aij 6 aþij ð8i; j 2 IÞ. Further more, 1

1þb
aþ

ji
�0:5
6

1
1þb

aji�0:5 6
1

1þb
a�

ji
�0:5 ð8i; j 2 I; b > 1Þ. Besides, according to Theorem 1,

B = (bij)n�n is a multiplicative consistent fuzzy preference relation,
where bij ¼ 1

1þb
aji�0:5 ð8i; j 2 I; b > 1Þ. So there exists a multiplicative

consistent fuzzy preference relation B = (bij)n�n, such that

b�ij 6 bij 6 bþij ð8i; j 2 IÞ. According to Definition 7, eB is a multiplica-
tive consistent IFPR. h
Theorem 4. Let eB ¼ b�ij ; b
þ
ij

h i� �
n�n

be a multiplicative consistent

IFPR. An additive consistent IFPR eA ¼ a�ij ; a
þ
ij

h i� �
n�n

can be achieved

through the following transformation
a�ij ¼ 0:5þ loga
b�ij
bþji
; aþij ¼ 0:5þ loga

bþij
b�ji
; 8i; j 2 I; a> max

i;j2I

bþij
b�ji

 !2

:

ð14Þ
Proof. Since eB ¼ b�ij ; b
þ
ij

h i� �
n�n

is a multiplicative consistent IFPR,
according to Definition 7, there exists a multiplicative consistent
FPR B = (bij)n�n, such that b�ij 6 bij 6 bþij ð8i; j 2 IÞ: Further more,

a > maxi;j2I
bþij
b�ji

� �2

P 1, then 0:5þ loga
b�ij
bþji
6 0:5þ loga

bij

bji
6 0:5þ

loga
bþij
b�ji
ð8i 2 IÞ: Besides, according to Theorem 2, A = (aij)n�n is an

additive consistent fuzzy preference relation, where aij ¼ 0:5þ
loga

bij

bji
ð8i; j 2 IÞ. So there exists an additive consistent fuzzy prefer-

ence relation A = (aij)n�n, such that a�ij 6 aij 6 aþij ð8i; j 2 IÞ. According

to Definition 6, eA is an additive consistent IFPR. h

For an additive consistent IFPR eA, through Eq. (13) with b =
81 > 1, it can be changed to a multiplicative consistent IFPR eB,

1
2 ;

1
2

� �
3
4� 1

4 log37; 1
4þ 1

4 log32
� �

3
4� 1

4 log32; 1
4þ 1

4 log37
� �

1
2 ;

1
2

� �� 	
¼ eA !ð13Þ eB

¼
1
2 ;

1
2

� �
3

10 ;
2
5

� �
3
5 ;

7
10

� �
1
2 ;

1
2

� �� 	
:

At the same time, through Eq. (14) with a = 81 > 49/9 =
(max{1,2/3,7/3})2, a multiplicative consistent IFPR eB can be chan-
ged to an additive consistent IFPR eA,

1
2 ;

1
2

� �
3

10 ;
2
5

� �
3
5 ;

7
10

� �
1
2 ;

1
2

� �" #
¼ eB !ð14Þ eA

¼
1
2 ;

1
2

� �
3
4� 1

4 log37; 1
4þ 1

4 log32
� �

3
4� 1

4 log32; 1
4þ 1

4 log37
� �

1
2 ;

1
2

� �" #
:

Based on Theorems 3 and 4, a multiplicative consistent IFPR
can be changed into an additive consistent IFPR. And how to col-
lect additive consistent information, transform back into multi-
plicative consistent information and derive interval weights
will be introduced in Section 3.
3. Deriving interval weights from an IFPR
For an IFPR eB ¼ b�ij ; b
þ
ij

h i� �
n�n

eB ¼
b�11; b

þ
11

� �
b�12; b

þ
12

� �
� � � b�1n; b

þ
1n

� �
b�21; b

þ
21

� �
b�22; b

þ
22

� �
� � � b�2n; b

þ
2n

� �
..
. ..

. ..
. ..

.

b�n1; b
þ
n1

� �
b�n2; b

þ
n2

� �
� � � b�nn; b

þ
nn

� �

2666664

3777775;
to collect multiplicative consistent information and derive interval

weights from the IFPR eB ¼ b�ij ; b
þ
ij

h i� �
n�n

, it can be changed to an-

other IFPR eA ¼ a�ij ; a
þ
ij

h i� �
n�n

eA ¼ ð~aijÞn�n ¼

a�11; a
þ
11

� �
a�12; a

þ
12

� �
� � � a�1n; a

þ
1n

� �
a�21; a

þ
21

� �
a�22; a

þ
22

� �
� � � a�2n; a

þ
2n

� �
..
. ..

. ..
. ..

.

a�n1; a
þ
n1

� �
a�n2; a

þ
n2

� �
� � � a�nn; a

þ
nn

� �

2666664

3777775
by Eq. (14) with a > maxi;j2I

bþji
b�ij

� �2

.
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3.1. Collecting additive consistent information from an additive
consistent IFPR eA

If eB ¼ b�ij ; b
þ
ij

h i� �
n�n

is a multiplicative consistent IFPR, accord-

ing to Theorem 4, then eA ¼ a�ij ; a
þ
ij

h i� �
n�n

is an additive consistent

IFPR. Collecting additive consistent information from an additive

consistent IFPR eA ¼ a�ij ; a
þ
ij

h i� �
n�n

will be introduced.

Theorem 5. If eA ¼ a�ij ; a
þ
ij

h i� �
n�n

is an additive consistent IFPR, then

for any j 2 I;
T

i2I a�ij ; a
þ
ij

h i
� a�i1; a

þ
i1

� �� �
is not empty.
;

Proof. Assume eA ¼ a�ij ; a
þ
ij

h i� �
n�n

is an additive consistent IFPR,

there exists an additive consistent FPR A = (aij)n�n, such that

a�ij 6 aij 6 aþij ; 8i; j 2 I: ð15Þ

Especially, when j = 1,

a�i1 6 ai1 6 aþi1; 8i 2 I: ð16Þ

For any j 2 I,

a�ij � aþi1 6 aij � ai1 6 aþij � a�i1; 8i 2 I: ð17Þ

Since A = (aij)n�n is an additive consistent FPR, so

aij ¼ ai1 � aj1 þ 0:5; 8i; j 2 I: ð18Þ

Eq. (17) can be changed to

a�ij � aþi1 6 �aj1 þ 0:5 6 aþij � a�i1; 8i 2 I; ð19Þ

so

�aj1 þ 0:5 2
\
i2I

a�ij � aþi1; a
þ
ij � a�i1

h i
¼
\
i2I

a�ij ; a
þ
ij

h i
� a�i1; a

þ
i1

� �� �
:

Therefore,
T

i2I a�ij ; a
þ
ij

h i
� a�i1; a

þ
i1

� �� �
is not empty. h

If eA ¼ a�ij ; a
þ
ij

h i� �
n�n

is an additive consistent IFPR, let eT j ¼
T

i2I

a�ij ; a
þ
ij

h i
� a�i1; a

þ
i1

� �� �
¼ T�j ; T

þ
j

h i
, then

eT j # a�ij ; a
þ
ij

h i
� a�i1; a

þ
i1

� �� �
; 8i 2 I:

On the one side, for all i0 2 I, if

eT j $ a�i0 j; a
þ
i0 j

h i
� a�i01; a

þ
i01

h i� �
;

then, there exists extra information, not additive consistent, con-

cluded in a�i01; a
þ
i01

h i
. To collect the additive consistent information,

reset it by

�a�i01; �a
þ
i01

h i
¼ a�i01; a

þ
i01

h i\
a�i0 j; a

þ
i0 j

h i
� T�j ; T

þ
j

h i� �
:

Proposition 1. If eA ¼ a�ij ; a
þ
ij

h i� �
n�n

is an IFPR, then the intersection

a�i01; a
þ
i01

h iT
a�i0j; a

þ
i0j

h i
� T�j ; T

þ
j

h i� �
is not empty.
Proof. Assume, on the contrary, the intersection a�i01; a
þ
i01

h iT
a�i0 j; a

þ
i0 j

h i
� T�j ; T

þ
j

h i� �
is empty. It is to say a�i01; a

þ
i01

h iT
a�i0 j � Tþj ; a

þ
i0 j � T�j

h i
is empty. We now consider the following two

cases.

Case 1: a�i01 > aþi0 j � T�j , then T�j > aþi0 j � a�i01. But, according to

T�j ; T
þ
j

h i
¼
T

i2I a�ij ; a
þ
ij

h i
� a�i1; a

þ
i1

� �� �
; T�j 6 Tþj 6 mini2Iaþij � a�i1 6

aþi0 j � a�i01.
Case 2: aþi01 < a�i0 j � Tþj , then Tþj < a�i0 j � aþi01. But, according to

T�j ;T
þ
j

h i
¼
T

i2I a�ij ;a
þ
ij

h i
� a�i1;a

þ
i1

� �� �
; Tþj P T�j P maxi2Ia�ij �aþi1 P

a�i0 j�aþi01. Both two cases are contradiction, the intersection

a�i01;a
þ
i01

h iT
a�i0 j;a

þ
i0 j

h i
� T�j ;T

þ
j

h i� �
is not empty. h

On the other side, for all i00 2 I, if

eT j ¼ a�i00j; a
þ
i00 j

h i
� a�i001; a

þ
i001

h i� �
;

then, a�i001; a
þ
i001

h i
is filled with additive consistent information. Don’t

need to adjust the first column.

Proposition 2. Let eA ¼ a�ij ; a
þ
ij

h i� �
n�n

is an IFPR, if eT j ¼ a�
i00j
; aþ

i00j

h i
�

�
a�

i001; a
þ
i001

h i�
; then a�

i001; a
þ
i001

h i
# a�

i00j
; aþ

i00j

h i
� T�j ; T

þ
j

h i� �
.

Proof. Since eT j ¼ T�j ; T
þ
j

h i
¼ a�i00 j; a

þ
i00 j

h i
� a�i001; a

þ
i001

h i� �
, we have

T�j ¼ a�i00 j � aþ
i001 and Tþj ¼ aþ

i00 j
� a�i001. Then aþ

i001 ¼ a�i00 j � T�j 6 aþ
i00 j
� T�j

and a�i001 ¼ aþ
i00 j
� Tþj P a�i00 j � Tþj . So a�i00 j � Tþj 6 a�i001 6 aþ

i001 6 aþ
i00 j
� T�j ,

it is the same as a�i001; a
þ
i001

h i
# a�i00 j � Tþj ; a

þ
i00 j
� T�j

h i
. h

In this case, the first column can also be set as

�a�i001; �a
þ
i001

h i
¼ a�i001; a

þ
i001

h i\
a�i00 j; a

þ
i00j

h i
� T�j ; T

þ
j

h i� �
:

In both sides above, set the new first column as follows,

�a�i1 ¼max a�i1 ; a
�
ij
� Tþj

n o
; �aþi1 ¼min aþi1 ; a

þ
ij
� T�j

n o
; 8i 2 I:

Based on the discussion, there is an algorithm to collect all the
additive consistent information to the first column �a�i1; �a

þ
i1

� �
ði 2 IÞ.

Algorithm 1
Input: An additive consistent interval fuzzy preference

relation eA ¼ ð~aijÞn�n and error e.

Output: �a�11; �a
þ
11

� �
; �a�21; �a

þ
21

� �
; � � � ; �a�n1; �a

þ
n1

� �
 �T
:

Step 1: Set k = 1,j = 2.
Step 2: Calculate ~ti ¼ a�ij ; a

þ
ij

h i
� a�i1; a

þ
i1

� �
;8i 2 I, and leteT j ¼ \n

i¼1
~ti:

Step 3: Note eT j ¼ T�j ; T
þ
j

h i
and set
a�i1¼ akj�
i1 ¼max a�i1;a

�
ij �Tþj

n o
; aþi1¼ akjþ

i1 ¼min aþi1;a
þ
ij �T�j

n o
aþ1i¼1�a�i1; a�1i¼1�aþi1; 8i2 I:

Step 4: If j < n, set j = j + 1, go to Step 2.

Step 5: If dk ¼ 1
2n

P
i2I jakn�

i1 � aðk�1Þn�
i1 j þ jaknþ

i1 � aðk�1Þnþ
i1 j

h i
< e;

then let �a�i1; �a
þ
i1

� �
¼ a�i1;a

þ
i1

� �
ði 2 IÞand return �a�i1; �a

þ
i1

� �
ði 2 IÞ;

Otherwise, set k = k + 1,j = 2, and go to Step 2.
3.2. Collecting additive consistent information from an IFPR eA without
additive consistency

If eB ¼ b�ij ; b
þ
ij

h i� �
n�n

is not a multiplicative consistent IFPR, theneA ¼ a�ij ; a
þ
ij

h i� �
n�n

, achieved through Eq. (14) with a >

maxi;j2I
bþji
b�ij

� �2

, is not an additive consistent IFPR. According to The-

orem 5, the intersection
T

i2I a�ij ; a
þ
ij

h i
� a�i1; a

þ
i1

� �� �
may empty. If
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there exist j0 2 I, the intersection
T

i2I a�ij0 ; a
þ
ij0

h i
� a�i1; a

þ
i1

� 	� �
¼T

i2I a�ij0 � aþi1; a
þ
ij0
� a�i1

h i
is empty. It is to say that

max
i2I

a�ij0 � aþi1
� �

> min
i2I

aþij0 � a�i1
� �

:

It means that the j0th column doesn’t contain additive consistent
information. To adjust this column, the average of maxi2I

a�ij0 � aþi1
� �

and mini2I aþij0 � a�i1
� �

is used to approach the intersec-
tion T�j0 ;T

þ
j0

h i
. Let T�j0 ¼ Tþj0 ¼

1
2 maxi2I a�ij0 �aþi1

� �
þmini2I aþij0 �a�i1

� �h i
,

and then the j0th column can be adjusted by

a�ij0 ¼ T�j0 þ aþi1; aþj0 i ¼ 1� a�ij0 ; 8i 2 fi 2 I : a�ij0 � aþi1 > T�j0 ; i – j0g;
aþij0 ¼ Tþj0 þ a�i1; a�j0 i ¼ 1� aþij0 ; 8i 2 fi 2 I : aþij0 � a�i1 < Tþj0 ; i – j0g:

In this way, there is a new algorithm to collect additive consistent
information from the inconsistent IFPR eA to the first column
�a�i1; �a

þ
i1

� �
ði 2 IÞ.

Algorithm 2
Input: An interval fuzzy preference relation eA ¼ ð~aijÞn�n and
error e.

Output: �a�11; �a
þ
11

� �
; �a�21; �a

þ
21

� �
; . . . ; �a�n1; �a

þ
n1

� �
 �T
:

Step 1: Set k = 1, j = 2.
Step 2: Calculate ~ti ¼ a�ij ; a

þ
ij

h i
� a�i1; a

þ
i1

� �
ði 2 IÞ, and leteT j ¼ \n

i¼1
~ti:

Step 3: If eT j is empty, the interval fuzzy preference relation
is inconsistent, set T�j ¼ Tþj ¼ 1

2 ðmaxi2It�i þmini2Itþi Þ and
set
;

:

;

a�ij ¼ T�j þ aþi1; aþji ¼ 1� a�ij ; 8i 2 i 2 I : a�ij � aþi1 > T�j ; i – j0

n o
aþij ¼ Tþj þ a�i1; a�ji ¼ 1� aþij ; 8i 2 i 2 I : aþij � a�i1 < Tþj ; i – j0

n o
Otherwise, note eT j ¼ ½T�j ; T

þ
j � and set

a�i1¼ akj�
i1 ¼max a�i1;a

�
ij �Tþj

n o
; aþi1¼ akjþ

i1 ¼min aþi1;a
þ
ij �T�j

n o
aþ1i¼1�a�i1;a

�
1i¼1�aþi1; 8i2 I:

Step 4: If j < n, set j = j + 1, go to Step 2.

Step 5: If dk ¼ 1
2n

P
i2I jakn�

i1 � aðk�1Þn�
i1 jþ

h
jaknþ

i1 � aðk�1Þnþ
i1 j� < e;

then let �a�i1; �a
þ
i1

� �
¼ a�i1; a

þ
i1

� �
ði 2 IÞ and return �a�i1; �a

þ
i1

� �
ði 2 IÞ;

Otherwise, set k = k + 1, j = 2, and go to Step 2.
According to Theorem 5, if eA is an additive consistent IFPR, theneT j is not empty. In this case, the Step 3 in Algorithm 2 is the same
as in Algorithm 1, then Algorithm 2 is the same as Algorithm 2. In
another word, no matter IFPR eA is additive consistent or not, Algo-
rithm 2 can be used to collect all the additive consistent informa-
tion to �a�i1; �a

þ
i1

� �
ði 2 IÞ

�a�11; �a
þ
11

� �
; �a�21; �a

þ
21

� �
; . . . ; �a�n1; �a

þ
n1

� �
 �T
:

Then, it can be transformed into �b�1j;
�bþ1j

h i
ðj 2 IÞ through Eq. (13)

with b = a > 1,

�b�11;
�bþ11

� �
; �b�12;

�bþ12

� �
; . . . ; �b�1n;

�bþ1n

� �
 �
;

which contains all the multiplicative consistent information in an
IFPR eB.

The following part is to calculate interval weights from the col-

lected multiplicative consistent information �b�1j;
�bþ1j

h i
ðj 2 IÞ.
3.3. An algorithm to derive interval weights from an IFPR eB
Theorem 6. [20] Let eB ¼ b�ij ; b

þ
ij

h i� �
n�n

be a multiplicative consis-
tent IFPR, and note �b�1j ¼minUb1j and �bþ1j ¼maxUb1j; 8j 2 I , then

min
X

w1 ¼
X
j2I

1� �b�1j

�b�1j

 !�1

; max
X

w1 ¼
X
j2I

1� �bþ1j

�bþ1j

 !�1

; i 2 I;

ð20Þ

w ¼ ðw1;w2; . . . ;wnÞ 2 X;

where U ¼ fðbijÞn�n 2 Rn�njb�ij 6 bij 6 bþij ;bijbjkbki ¼ bikbkjbji; 8i; j;k 2 Ig
and X ¼ fðw1;w2; . . . ;wnÞ 2 Rnjwi P 0;

Pn
i¼1wi ¼ 1;b�ij 6

wi
wiþwj

6 bþij ;
8i; j 2 Ig.

Based on Theorem 6 and Algorithm 2 above, there is an algo-

rithm to derive all the interval weights from an IFPR eB ¼
b�ij ; b

þ
ij

h i� �
n�n

, no matter the IFPR is multiplicative consistent or not.

Algorithm 3
Input: A multiplicative consistent IFPR eB ¼ b�ij ; b
þ
ij

h i� �
n�n

and error e.
Output: ~w1; ~w2; . . . ; ~wn.

Step 1: Set m ¼ 1;a ¼ b > maxi;j2I
bþji
b�ij

� �2

.

Step 2: Transform the multiplicative consistent IFPReB ¼ b�ij ; b
þ
ij

h i� �
n�n

into an additive consistent IFPR eA ¼
a�ij ; a

þ
ij

h i� �
n�n

through Eq. (14).

Step 3: Through Algorithm 2, input the additive consistent

IFPR eA ¼ a�ij ; a
þ
ij

h i� �
n�n

and error e, then all additive consis-

tent information �a�i1; �a
þ
i1

� �
ði 2 IÞ will be outputted.

Step 4: Transform �a�i1; �a
þ
i1

� �
ði 2 IÞ into �b�1j;

�bþ1j

h i
ðj 2 IÞ

through Eq. (13).
Step 5: Derive the interval weight ~wm by
~wm ¼
X
j2I

1� �b�1j

�b�1j

 !�1

;
X
j2I

1� �bþ1j

�bþ1j

 !�1
24 35; i 2 I:

Step 6: If m < n, set m = m + 1, exchange both the mth row

and column with the first in eB ¼ b�ij ; b
þ
ij

h i� �
n�n

and go to

Step 2; Otherwise, return ~w1; ~w2; . . . ; ~wn.
All weights which output from Algorithm 3 are interval num-
bers. To rank interval weights, a straightforward possibility-degree
formula introduced by Xu and Da [24] is used to compare two
interval weights.
Definition 8. [24] Let ~wi ¼ w�i ;w
þ
i

� �
and ~wj ¼ w�j ;w

þ
j

h i
be any two

interval weights, where 0 6 w�i 6 wþi 6 1 and 0 6 w�j 6 wþj 6 1,
then the degree of possibility of ~wi P ~wj is defined as

pð ~wi P ~wjÞ ¼max 1�max
wþj �w�i

wþi �w�i þwþj �w�j
;0

( )
;0

( )
:

ð21Þ

That is, ~wi is superior to ~wj to degree of pð~wi P ~wjÞ, denoted by

~wi �
pð ~wiP~wjÞ

~wj. Especially, pð~wi P ~wjÞ > 0:5 indicates that ~wi is supe-
rior to ~wj to degree of pð~wi P ~wjÞ; pð~wi P ~wjÞ ¼ 0:5 indicates that
~wi is the same as ~wj; pð~wi P ~wjÞ < 0:5 indicates that ~wj is superior
to ~wi to degree of 1� pð~wi P ~wjÞ.
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4. Numerical examples
Example 1. In SWOT analysis [25], decision makers compare each
pair of elements in {Strengths,Weaknesses,Opportunities,Threats}
and provide their preferences, respectively. All preferences are
collected in

eB ¼
½0:5;0:5� ½0:36;0:66� ½0:26;0:45� ½0:57;0:72�
½0:34;0:63� ½0:5;0:5� ½0:32;0:52� ½0:55;0:77�
½0:55;0:74� ½0:48;0:68� ½0:5;0:5� ½0:66;0:83�
½0:28;0:43� ½0:23;0:45� ½0:17;0:34� ½0:5;0:5�

26664
37775:

The following steps can help to derive interval weights from eB and
rank the four elements of Strengths (S), Weaknesses (W), Opportuni-
ties (O) and Threats (T):

Step 1: Calculate maxi;j2I
bþji
b�ij

� �2

� 4:882 and let a = b = 25.

Step 2: Then the multiplicative consistent IFPR eB can be chan-
ged to an additive consistent IFPR eA through Eq. (14)
eA ¼
½0:5000;0:5000� ½0:3261;0:7061� ½0:1751;0:4377� ½0:5876;0:7934�
½0:2939;0:6739� ½0:5000;0:5000� ½0:2658;0:5249� ½0:5623;0:8754�
½0:5623;0:8249� ½0:4751;0:7342� ½0:5000;0:5000� ½0:7061;0:9926�
½0:2066;0:4124� ½0:1246;0:4377� ½0:0074; 0:2939� ½0:5000;0:5000�

26664
37775:

eA
Step 3: Through Algorithm 2 with e = 0.001, input eA, then out-
put the additive consistent information ½�a�i1; �aþi1� (i 2 I) that
([0.5,0.5] [0.3282,0.6739][0.5623,0.8249][0.2066,0.4124])T.
Step 4: Through Eq. (13), transform all the additive consistent

information �a�i1; �a
þ
i1

� �
ði 2 IÞ into �b�1j;

�bþ1j

h i
ðj 2 IÞ that ([0.5,0.5]

[0.3636,0.6349][0.26,0.45][0.57,0.72]).
Step 5: Derive the interval weight ~w1 ¼ ½0:1575;0:3138� by Eq.
(20).
Step 6: Exchange both the mth row and column with the first ineB ¼ b�ij ; b

þ
ij

h i� �
n�n

, go to Step 2 and derive all the interval

weights that ~w2 ¼ ½0:1760;0:3580�; ~w3 ¼ ½0:2927;0:4934�;
~w4 ¼ ½0:0847;0:1822�.
¼

½0:5000;0:5000� ½0:5000;0:5901� ½0:1919;0:5000� ½0:3117;0:6883� ½0:3117;0:5000�
½0:4099;0:5000� ½0:5000; 0:5000� ½0:3117; 0:5901� ½0:5901;0:8081� ½0:1919;0:4099�
½0:5000;0:8081� ½0:4099; 0:6883� ½0:5000; 0:5000� ½0:6883;0:8081� ½0:4099;0:5000�
½0:3117;0:6883� ½0:1919;0:4099� ½0:1919; 0:3117� ½0:5000;0:5000� ½0:0117;0:4099�
½0:5000;0:6883� ½0:5901; 0:8081� ½0:5000;0:5901� ½0:5901;0:9883� ½0:5000;0:5000�

26666664

37777775:
Then, the possibility-degree formula can be used to compare
each pair of ~wi and ~wj ði; j ¼ 1;2;3;4Þ by Eq. (21), and construct the
following fuzzy preference relation:

P ¼

0:5 0:4074 0:0593 0:9026
0:5926 0:5 0:1707 0:9779
0:9407 0:8293 0:5 1
0:0974 0:0221 0 0:5

26664
37775:

Summing all the elements of each row of P, we get:
p1 = 1.8692, p2 = 2.2412, p3 = 3.2700, p4 = 0.6195. Then,

w3 �
83%

w2 �
59%

w1 �
90%

w4:
Therefore, Strengths (S), Weaknesses (W), Opportunities (O), Threats
(T) can be ranked as follows:

Opportunities �Weaknesses � Strengths � Threats:

Gao and Peng [25] utilized the UOWA operator which had been pro-
posed by Xu and Da [24] to derive the priority weights using the
lower limits of interval numbers. It is rough that only the lower lim-
its were taken into account. Most information in interval numbers
may be lost. With their method, the priority weights of eB is that
w1 = 0.264, w2 = 0.269, w3 = 0.284, w4 = 0.183. It’s obviously that al-
most all wi are contained in ~wi ði 2 IÞ.
Example 2. Consider a fuzzy multiple criteria decision-making
problem with a finite set of 5 criteria, let X = {x1,x2,x3,x4,x5} be
the set of criteria and let I = {1,2,3,4,5} be the set of index. A deci-
sion maker compares each pair of criteria in X, and provides his/her
preference degree ~bij ¼ b�ij ; b

þ
ij

h i
ði; j 2 IÞ of the criterion xi over xj.

All these preference degrees ~bij ði; j 2 IÞ compose a multiplicative
consistent IFPR eB ¼ ð~bijÞn�n [20]
eB ¼
½0:5;0:5� ½0:5;0:6� ½0:2;0:5� ½0:3;0:7� ½0:3;0:5�
½0;4;0:5� ½0:5;0:5� ½0:3;0:6� ½0:6;0:8� ½0:2;0:4�
½0:5;0:8� ½0:4;0:7� ½0:5;0:5� ½0:7;0:8� ½0:4;0:5�
½0:3;0:7� ½0:2;0:4� ½0:2;0:3� ½0:5;0:5� ½0:1;0:4�
½0:5;0:7� ½0:6;0:8� ½0:5;0:6� ½0:6;0:9� ½0:5;0:5�

26666664

37777775:

The following steps can help to derive interval weights and rank
x1,x2,x3,x4,x5:

Step 1: Calculate maxi;j2I
bþji
b�ij

� �2

¼ 81 and let a = b = 90.

Step 2: Then the multiplicative consistent IFPR eB can be chan-
ged to an additive consistent IFPR eA through Eq. (14)
Step 3: Through Algorithm 2 with e = 0.001, input eA, then output
the additive consistent information �a�i1; �a

þ
i1

� �
ði 2 IÞ that ([0.5,0.5]

[0.4099,0.5][0.5,0.6883][0.3117,0.4099][0.5,0.6883])T.
Step 4: Through Eq. (13), transform all the additive consistent
information �a�i1; �a

þ
i1

� �
ði 2 IÞ into �b�1j;

�bþ1j

h i
ðj 2 IÞ that ([0.5,0.5]

[0.5,0.6] [0.3,0.5] [0.6,0.7][0.3,0.5]).
Step 5: Derive the interval weight ~w1 ¼ ½0:1364;0:2442� by Eq.
(20).
Step 6: Exchange both the mth row and column with the first ineB ¼ b�ij ; b

þ
ij

h i� �
n�n

, go to Step 2 and derive all the interval

weights that ~w2 ¼ ½0:1111;0:2029�; ~w3 ¼ ½0:2029;0:3218�;
~w4 ¼ ½0:0662;0:1154�; ~w5 ¼ ½0:2442;0:3899�.
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Then, the possibility-degree formula can be used to compare
each pair of ~wi and ~wj ði; j ¼ 1;2;3;4Þ by Eq. (21), and construct the
following fuzzy preference relation:

P ¼

0:5 0:6668 0:1822 1 0
0:3332 0:5 0 0:9695 0
0:8178 1 0:5 1 0:2933

0 0:0305 0 0:5 0
1 1 0:7067 1 0:5

26666664

37777775:

Summing all the elements of each row of P, we get:

p1 ¼ 2:3490; p2 ¼ 1:8027; p3 ¼ 3:6111; p4 ¼ 0:5305; p5

¼ 4:2067:

Then,

~w5 �
71%

~w3 �
82%

~w1 �
67%

~w2 �
97%

~w4:

Therefore, x1,x2,x3,x4 can be ranked as follows:

x5 � x3 � x1 � x2 � x4:

Based on the interval multiplicative transitivity, Genc et al. [20]
used an estimated interval fuzzy preference relation to replace the
original to derive interval weights. However, all processes were
based on repeatedly solving mathematical models, which is com-
plex. With their method, all the derived interval weights of eB are
the same as the results above.
5. Conclusions

In this paper, based on the exchanges of an additive consistent
IFPR and a multiplicative consistent IFPR, we have developed a
method to derive interval weights from both multiplicative consis-
tent IFPR and an inconsistent one. Firstly, Some exchanges be-
tween an additive consistent FPR and a multiplicative consistent
FPR have been established. Then, these exchanges have been ex-
tended to IFPR and relations between an additive consistent IFPR
and a multiplicative consistent IFPR have been established. Sec-
ondly, a multiplicative consistent IFPR has been changed into an
additive consistent IFPR. Thirdly, all the additive consistent infor-
mation has been collected and changed back into multiplicative
consistent information in IFPR. Fourthly, the interval weights have
been generated from the collected multiplicative consistent infor-
mation. Finally, two numerical examples are given to illustrate the
new method.

For an interval fuzzy preference relation, both multiplicative
consistent relation and additive consistent relation can be used
to derive the weights. However, what’s the relationship of the
two kinds of weights and which is more reasonable are unknown.
Both of them need further research.
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