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a b s t r a c t 

In microarray-based gene expression analysis, thousands of genes are involved to monitor their expres- 

sion levels under a particular condition. In fact, however, only few of them are highly expressed, which 

has been proven by Golub et al. How to identify these discriminative genes effectively is a significant 

challenge to risk assessment, diagnosis, prognostication in growing cancer incidence and mortality. 

In this paper, we present a global feature selection method based on semidefinite programming model 

which is relaxed from the quadratic programming model with maximizing feature relevance and mini- 

mizing feature redundancy. The main advantage of relaxation is that the matrix in mathematical model 

only requires symmetric matrix rather than positive (or semi) definite matrix. In semidefinite program- 

ming model, each feature has one constraint condition to restrict the objective function of feature selec- 

tion problem. Herein, another trick in this paper is that we utilize Lagrange multiplier as proxy measure- 

ment to identify the discriminative features instead of solving a feasible solution for the original max-cut 

problem. The proposed method is compared with several popular feature selection methods on seven 

microarray data sets. The results demonstrate that our method outperforms the others on most data sets, 

especially for the two hard feature selection data sets, Beast(Wang) and Medulloblastoma. 

© 2016 Elsevier B.V. All rights reserved. 
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. Introduction 

In microarray data analysis, identifying the disease-associated

enes has been proven to be an important way to a certain diag-

osis, therapy, and cancer prognosis [8] . This type of data may eas-

ly come out with thousands of features 1 . However, many of them

ay be redundant or irrelevant to the prediction [32,33] . More-

ver, the situation in which is likely to render the risk of overfit-

ing and easy to increase the computational burden of processing

21,37] . Therefore, selecting a discriminative and parsimonious sub-

et of features before performing classification is a very important

ask for the analysis of microarry gene expression data. 

In the last decades, a considerable effort has been devoted to

eveloping feature selection procedures. These methods designed

ith different criteria broadly fall into three categories, namely fil-

er (classifier-independent) [26,38] , wrapper (classifier-dependent)

2,24] and embedded [39] (classifier-dependent). Compared with

he other two types of feature selection methods, the filter method,
∗ Corresponding author. Fax: +86-29-82667964. 

E-mail addresses: shiquan_sun@126.com (S. Sun), qkpeng@xjtu.edu.cn , 

kpeng@mail.xjtu.edu.cn (Q. Peng). 
1 we do not distinguish between gene and feature in this paper. 
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hich is relatively cheap in terms of computational expense and

asy to avoid over-fitting, is widely used for feature selection prob-

em. In general, the filter method defines a score to act as a proxy

easurement of the importance of a specific feature, particularly

or iterative-based greedy methods such as Relief [29] and mRMR

32] . Brown et al. summarized seventeen mutual information or

onditional mutual information-based feature selection methods 

nd developed a unifying framework for these methods [6] . This

ork can guide us in various situations to choose a appropri-

te method in feature selection problem. However, these iterative

ethods are greedy in nature, and therefore are prone to obtain

ub-optimal solutions in feature selection problem. For example,

uppose we want to select two features from given features x 1 ,

 2 , x 3 , and x 4 . The mutual information between features and class

 are I( x 1 ; y ) = 0 . 56 I( x 2 ; y ) = 0 . 33 , I( x 3 ; y ) = 0 . 25 , and I( x 4 ; y ) =
 . 43 . The conditional mutual information between features given

lass are I( x 1 , x 2 | y ) = 0 . 62 , I( x 3 , x 4 | y ) = 0 . 65 , I( x 1 , x 4 | y ) = 0 . 09 ,

( x 2 , x 3 | y ) = 0 . 19 , I( x 1 , x 3 | y ) = 0 . 12 , and I( x 2 , x 4 | y ) = 0 . 05 . Actu-

lly, we will obtain a feature subset { x 1 , x 2 } rather than the opti-

al a feature subset { x 3 , x 4 } because dropping feature x 1 will lose

ore information than the others. 

To deal with this issue, theoretically, a promising way is to es-

ablish convex quadratic programming model, which can find a

http://dx.doi.org/10.1016/j.knosys.2016.07.035
http://www.ScienceDirect.com
http://www.elsevier.com/locate/knosys
http://crossmark.crossref.org/dialog/?doi=10.1016/j.knosys.2016.07.035&domain=pdf
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global optimal solution for feature selection problem [20] . How-

ever, the matrix K in quadratic model is usually indefinite (i.e.

there exists the negative eigenvalue) in practical applications,

which results in nonconvex optimization, especially in microar-

ray data analysis. To ensure the positive(or semi) definiteness of

matrix K , an important work proposed by Rodriguez-Lujan et al.

[36] (QPFS) is to use Nyström sampling method using low-rank

approximation for K . The drawback of QPFS presented by Nguyen

et al. [31] is that self-redundancy should not be included in K

which may result in selection bias. But if the self-redundancy term

(the elements on the main diagonal of matrix K ) is omitted from

the matrix K , it will violate the positive definiteness. 

An alternative way to deal with this problem is to relax

the quadratic programming model as semi-definite programming

model in which the matrix K only requires to ensure the symme-

try. In this paper, instead of adopting a direct solving quadratic

programming, we consider its semidefinite relaxation model in

which each feature is restricted by one constraint condition. Fur-

ther, there is no need to obtain the solution of primal problem via

rounding method in the proposed approach. We just utilize the so-

lution of dual problem, Lagrange multiplier , as proxy measurement

to select the discriminative features for classification. Experimen-

tal results show that new mathematical model based on Lagrange

multipliers is a competitive and efficient filter-type feature selec-

tion method for classification. 

The paper is organized as follows: Section 2 devotes to establish

a semi-definite programming model for feature selection problem.

Section 3 explains why the Lagrange multiplier can be interpreted

as a score for the process of feature selection. Section 4 conducts

several experiments to verify the proposed model. The discussion

and conclusion can be found in Section 5 . 

2. The optimization model for feature selection problem 

Given a feature set X = ( x 1 , x 2 , · · · , x n ) where x i ∈ R 

m , and re-

sponse variable (or target class variable) y where y ∈ R 

m ( m is the

number of samples and n is the number of features). Essentially,

most of filtering feature selection methods share the same objec-

tive function, min 

w 

J ( w ) = ‖ y − X w ‖ 2 
2 
. The goal is to find the op-

timal coefficient w as the score to select the discriminative fea-

tures. Actually, we reformulate the equivalent form of the above

optimization problem as min 

w 

J ( w ) = w X 

T X w − βy T X w . To cap-

ture the nonlinear relationship between features, and features and

the response variable y , kernel functions are commonly considered

in practical applications. Therefore, the above problem can be re-

formulated as 

min 

w 

J ( w ) = w 

T K 

xx w − βK 

xy w (1)

where K 

xx is the kernel matrix of data X . That is, ⎛ 

⎜ ⎜ ⎜ ⎝ 

κxx 
11 κxx 

12 · · · κxx 
1 n 

κxx 
21 κxx 

22 · · · κxx 
2 n 

. . . 
. . . 

. . . 
. . . 

κxx 
n 1 κxx 

n 2 · · · κxx 
nn 

⎞ 

⎟ ⎟ ⎟ ⎠ 

= K 

xx 
. 

and K 

xy is the kernel vector between response variable y and fea-

tures ⎛ 

⎜ ⎜ ⎜ ⎝ 

κxy 
1 

κxy 
2 

. . . 

κxy 
n 

⎞ 

⎟ ⎟ ⎟ ⎠ 

= K 

xy 
. 

The first term in Eq. (1) is considered as a redundancy term

and the second term is a relevancy term. This is the well-known
elevancy-redundancy criterion in feature selection problem. In

he following we will illustrate two families of feature selection

roblem which can fit this filter criterion, information theory-

ased feature selection methods which are belong to the iterative

earch paradigm, and quadratic programming-based feature selec-

ion methods which are the global search techniques. 

.1. Information theory-based feature selection methods 

Information theoretic feature selection methods consider the

lements of kernel matrix K 

xx and K 

xy in Eq. (1) as mutual in-

ormation I ( x i ; x j ) or conditional mutual information I ( x i ; x j | y ).

or this paradigm, there are two important papers [6,46] : Brown

t al. summarized seventeen information theory-based filter meth-

ds over the last two decades and presented a unifying framework

or these methods; and Vergara and Estvez presented a number of

pen problems in this field. 

The generalized minimum Redundancy Maximum Relevance

mRMR) family framework [32] is parameterized as 

min 

x i 
J mrmr = 

∑ 

x j ∈ S 
I 
(
x i ; x j 

)
− βI ( x i ; y ) (2)

here S is the selected feature subset already. Alternatively, we

an replace I ( x i ; x j ) with I ( x i ; x j | y ) or set the coefficient β with

ifferent values, it will fall into different feature filter methods. For

xample, if we replace I ( x i ; x j ) with I 
(
x i ; x j 

)
− I 

(
x i ; x j | y 

)
and set β

s the cardinality of selected feature subset S , it becomes the well-

nown filter method Joint Mutual Information (JMI), i.e., 

min 

x i 
J jmi = 

∑ 

x j ∈ S 

{
I 
(
x i ; x j 

)
− I 

(
x i ; x j | y 

)}
− | S | I ( x i ; y ) (3)

The QPFS proposed by Rodriguez-Lujan et al. [36] set the el-

ments of kernel matrix K 

xx as κxx 
i j 

= I 
(
x i ; x j 

)
and κxx 

ii 
= I ( x i ; x i ) .

enerally, the self-redundancy term κxx 
ii 

might result in selection

ias. However, if the κxx 
ii 

is set as 0, the matrix K is indefinite, the

ptimal solution might not be found because of nonconvex objec-

ive function. However, this issue cannot affect our model. There-

ore, we set κxx 
i j 

= I 
(
x i ; x j 

)
and κxx 

ii 
= 0 . 

.2. Quadratic programming-based feature selection methods 

Acutally, we can easily cast the Eq. (2) as quadratic program-

ing feature selection (QPFS) problem if we fix the number of se-

ected features, 

minimize 
w 

w 

T K 

xx w − βK 

xy w 

subject to 

∑ n 

i =1 
w i = k, 

w i ∈ { 0 , 1 } , i = 1 , 2 , · · · , n. 

(4)

here K 

xx 
n ×n is a matrix of feature pairwise redundancy. K 

xy 
n ×1 

is a

ector of feature relevancy. Unfortunately, it is an NP-hard prob-

em. An alternative way is to drop the 0–1 integer programming

roblem into continuous optimization problem resulting in, 

minimize 
w 

w 

T K 

xx w − βK 

xy w 

subject to 

∑ n 

i =1 
w i = k, 

w i ≥ 0 , i = 1 , 2 , · · · , n. 

(5)

he most attractive characteristic of the QPFS is that it can obtain

he globally optimal solution if the matrix K 

xx is positive (or semi)

efiniteness. In practice, it is fail to guarantee the positive defi-

iteness, especially in high-dimensional and small sample size data

ets. 

To decrease the condition of positive (or semi) definiteness,

e continue to relax the optimization model as semi-definite pro-

ramming (SDP) model. Based on Eq. (4) , we can reformulate K =
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xx − βdiag( K 

xy ) because of the variable w i ∈ {0, 1}, therefore, the

q. (4) can be rewritten as follows without considering the fixed

umber of selected features. 

min 

 ∈{ 0 , 1 } n J ( w ) = w 

T K w 

We consider the semidefinite relaxation of quadratic 0–1 op-

imization. This problem is equivalent to max-cut problem [25] .

herefore, we use simple variable transformation w i = 

z i +1 
2 to con-

ert variable w i ∈ {0, 1} into the variable z i ∈ {−1 , 1 } in max-cut

roblem. Now the new objective function becomes 

min 

 ∈{−1 , 1 } n J ( z ) = ( z + e ) T K ( z + e ) 

here e ∈ R 

n is a column vector of all 1s. 

A variable expansion trick can be applied to put both the trans-

ormed objective function and the constraint back into a nice

uadratic form. Let z = ( z 0 , z 1 , z 2 , · · · , z n ) and z 0 = 1 . Then we can

btain a new form in term of the following matrix 

 = 

(
e T K e e T K 

K e K 

)
( n +1 ) ×( n +1 ) 

(6) 

After this transformation, the Eq. (2) becomes the following op-

imization model 

minimize 
z 

z T C z 

subject to z 0 = 1 , 

z i ∈ {−1 , 1 } , i = 1 , 2 , · · · , n. 

(7) 

We now return our attention to the semidefinite relaxation for

he model (7) . Let Z = z z T , the above problem is equivalent to the

ollowing (convex) SDP in primal form by dropping the rank con-

traint rank ( Z ) = 1 . 

minimize 
Z 

trace ( CZ ) 

subject to trace ( e i e 
T 
i Z ) = 1 , i = 0 , 1 , · · · , n, 

Z � 0 . 

(8) 

ere Z � 0 represents that the matrix Z is a positive semidefinite

atrix, and trace( ·) is the trace of matrix. The vector e i ∈ R 

n +1 rep-

esents a unit column vector that the (i + 1) -th element is equal to

ne. 

We also consider the SDP problem (8) in a dual form. Apply-

ng the Lagrange multiplier technique we obtain the Lagrange func-

ion 

 ( Z , λ, S ) = trace ( CZ ) −
∑ n 

i =0 
λi ( trace ( e i e 

T 
i Z ) − 1) − trace ( SZ ) . 

For ∀ λ = 

⎛ 

⎜ ⎝ 

λ0 

. 

. 

. 

λn 

⎞ 

⎟ ⎠ 

∈ R 

n +1 , ∀ S � 0, we take the partial derivative

f L with respect to the primal variable Z and then set this partial

erivative equal to zero, namely 

∂L 

(
Z , λ, S 

)
∂ Z 

= C −
∑ n 

i =0 
λi 

(
e i e 

T 
i 

)
− S = 0 . 

hen, substituting the above equation into L 

(
Z , λ, S 

)
, we have the

ollowing dual objective function 

minimize 
λ, S 

e T λ

subject to 

∑ n 

i =0 
λi ( e i e 

T 
i ) + S = C , 

λ ∈ R 

n +1 , S � 0 . 

(9) 

ere ( λ, S ) is a feasible solution for the dual problem and the λ is

he Lagrange Multiplier . 
We solve this problem using infeasible path − f ol l owing algo-

ithm, which solves the pair of SDP Eqs. (8) and (9) simultane-

usly, and the package, SDPT-3 implemented in MATLAB, is freely

vailable software (This package is at: http://www.math.nus.edu.

g/ ∼mattohkc/sdpt3.html ). Once the optimum solution ( λ∗, S ∗) of

ual problem is obtained, we do not need to generate a feasible

olution to an original discrete problem via rounding method. We

nly use the optimal Lagrange multiplier λ∗ to act as a proxy mea-

urement of the importance of features. The next section will an-

wer the question that why the Lagrange multiplier can be inter-

reted as the score of features. 

To clearly represent LM method in feature selection process, we

ummarize the procedure of LM in Algorithm 1 . Suppose we want

o select a feature subset S with size k . 

lgorithm 1 Feature selection using Lagrange multipliers (LM) 

Data: X , y 

Result: Selected gene subset S 

1. Normalize the data X 

2. Calculate the matrix C in Equation (6) 

3. repeat 

4. Solve the primal problem (Equation (8)), z 

5. Solve the dual problem (Equation (9)), λ
6. until ‖ z − λ−1 ‖ ≤ ε
7. According to the rank of the optimal Lagrange multiplier λ∗

,

select top k genes as S 

8. Return: S 

. The interpretation of Lagrange multiplier for feature 

election 

This section is devoted to interpreting how Lagrange multipli-

rs enable us to select features. Intuitively, in real applications, the

onstraint function can be thought of as “competing ” with the de-

ired objective function to “pull ” the solution to its minimum (or

aximum). The Lagrange multiplier can be thought of as a mea-

ure of how hard it is to pull in order to make those “forces ” bal-

nce out on the constraint surface. This can be naturally general-

zed to multiple constraints, which typically “pull ” in different di-

ections. Therefore, the value of Lagrange multipliers can be inter-

reted as the magnitude of force in those directions. In the follow-

ng we illustrate two applications for our inspiration regardless of

heir theoretical aspects. 

The first inspiration we use Lagrange multipliers to select fea-

ures is from support vector machine (SVM) which is quadratic

rogramming model described in [45] . It is well known that the

athematical model of SVM is established in feature space. Each

ample has one constraint, and the total number of constraints is

 . 

minimize 
w 

1 

2 

w 

T w 

subject to y i 
(
w 

T x i + b 
)

≥ 1 , i = 1 , 2 , · · · , m. 

(10) 

In general, instead of solving quadratic programming model, it

s usually much easier to deal with its dual form formulating as

ollows. 

minimize 
α

J ( α) = 

1 

2 

∑ m 

i =1 

∑ m 

j=1 
αi α j y i y j 

〈
x i , x j 

〉
−

m ∑ 

i =1 

αi 

subject to 

∑ m 

i =1 
αi y i = 0 , αi ≥ 0 , i = 1 , 2 , · · · , m. 

(11) 

The solution of dual form α, i.e. Lagrange multiplier, com-

only indicates whether the sample contributes to the classifica-

ion model or not. In fact, only a few elements of α are nonzero

http://www.math.nus.edu.sg/~mattohkc/sdpt3.html
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Fig. 1. The experimental diagram in our experiment. It is mainly divided into three parts: preprocessing phrase, feature selection phrase, and model training and prediction 

phrase. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1 

Microarray gene expression data sets used in our experiments. 

Dataset ID Dataset name Features Samples P/N References 

MT1 AMLALL 7129 72 38/34 [17] 

MT2 Breast cancer 22,283 209 138/71 [47] 

MT3 Colon 20 0 0 62 40/22 [1] 

MT4 DLBCL 7129 77 58/19 [40] 

MT5 Lung 7129 86 62/24 [18] 

MT6 Medulloblastoma 7129 60 39/21 [34] 

MT7 Prostate cancer 12,600 102 52/50 [41] 
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(denoted as nSV, nSV < m ) and their corresponding samples are

so-called “support vectors ”. In our case, we try to establish the opti-

mization model in sample space, and construct each constraint for

each feature (see optimization model (8) ), the solution of its dual

form indicates the magnitude of each feature to contribute the

objective function in feature selection problem (see optimization

model (9) ). Note that, one popular SVM-based iterative method is

SVMrfe proposed by Rakotomamonjy [35] and is widely used in

feature selection problem. 

The second inspiration we use Lagrange multipliers to select

features is from mathematical optimization. Lagrange multiplier

method is a powerful tool for solving the optimization problems

with implicit constraints and eliminating extra variables. From the

sensitivity theorem [3] , we notice that Lagrange multiplier can be

interpreted as the rate of change of the optimal cost as the level of

constraints changes , i.e., 

F( λ, x ) = ‖∇ U ( x ) −
∑ n 

i =1 
λi ∇ D i ( x ) ‖ 

2 
2 . 

where U is a cost function and D i is a constraint function.

F( λ, x ) = 0 when the x and λ achieve the optimal value x ∗ and

λ∗, respectively. We compare with the objective function of feature

selection, which can be re-expressed as follows, 

J ( w ) = ‖ y −
∑ n 

i =1 
w i x i ‖ 

2 
2 . 

where the w is regression coefficient and X = ( x 1 , x 2 , · · · , x n ) . Ac-

tually, with respect to F( λ, x ) , it has been widely used for the

identification of force and potential energy in physics [16] , the

decision-making analysis in economics [12] (Lagrange multiplier

usually interpreted as the “shadow price ” of its constraints), topol-

ogy error identification in engineering [9] and others [22] . 

Inspired by the two examples mentioned above, therefore, it is

very straightforward to switch our attention to selecting features

using Lagrange multipliers. The magnitudes of Lagrange multipliers

indicate the degree of importance of features, in other words, the

contribution of features to the objective function. 

4. Experiments 

In this section, we shall empirically provide insights into the

performance of proposed method (LM) and other six feature se-

lection methods including five iterative feature selection methods,

Relief, FBCF, mRMR, JMI, and SVMrfe; and a global feature selection

method, QPFS. All experiments are conducted with five-fold cross

validation (CV) which means each data set is randomly partitioned

into 5 parts, four parts are used as training set, and the remaining

one is used as testing set. 

4.1. Experimental procedure 

The experimental procedure is illustrated diagrammatically in

Fig. 1 . The first step is splitting the raw data set into two parts
i.e. training data set and test data set). In training phase, the fea-

ure selection module is to select the discriminative features from

hole feature set, and then a learning model is trained using se-

ected features. In testing phase, the trained model makes deci-

ion automatically for test data set. In preprocessing module of our

ase, the data X is centered and normalized such that each feature

as zero-mean and one-standard deviation. Note that, the train-

ng data set and the test data set must be handled separately and

he test data set is normalized using mean and variance which are

rom training data set. 

In this paper, we focus on the comparison of feature selec-

ion methods, while classification methods are used to train the

odel using the features which are selected by those methods.

ver the past few years, many different kinds of feature selec-

ion methods have been developed. A well-known example is Re-

ief [23] , which is to update the score (or weight) of each fea-

ure according to its ability to discriminate samples with differ-

nt class. However, Relief may fail to remove the features that are

ighly correlated with the discriminative features. In other words,

t cannot identify redundant features. Generally, redundant fea-

ures should be removed as well because they also affect the ac-

uracy of prediction and the speed of training classification mod-

ls. Fast Correlation Based Feature selection method (FCBF) de-

igned by [28] is a typical method to separate relevant and re-

undant features based on pairwise correlation (i.e. Symmetrical

ncertainty). However, FCBF does not identify redundant features

recisely in practice [7,42] . The other two popular methods are

inimum Redundancy and Maximum Relevance (mRMR) [32] and

oint Mutual Information (JMI) [48] . JMI contains the conditional

edundancy term while mRMR criterion omits the conditional re-

undancy term ( Section 2.1 ). In practice, JMI outperforms mRMR

n some cases while mRMR perform well than JMI in other cases

6] . Another important feature selection method is Support Vec-

or Machine recursive feature elimination (SVMrfe) [19] , which is a

uadratic programming-based feature selection method. However,

n principal, the methods mentioned above are iterative feature se-

ection methods. A potential drawback is that once a feature is se-

ected, it cannot be dropped at later stage (a simple example in In-

roduction). Therefore, to avoid obtaining suboptimal solution for
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Fig. 2. Visualizing stability performance of six feature selection procedures on MT1 data set with top 10 features. A point indicates that the corresponding feature is selected 

per trial. The more complete vertical lines the algorithm has (i.e., same feature selected among different trials), the more stable it is. 
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t  
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p  

p  

p

4

eature selection problem, a Quadratic Programming Feature Selec-

ion method (QPFS) [36] was proposed to find the global solution

or feature selection problem. However, several non-trivial issues

re restricted to its applications, such as requiring the matrix K is

ositive definition. Therefore, in this paper, we relax the quadratic

 

t  
rogramming to semi-definite programming for feature selection

roblem. 

.2. Microarray gene expression data sets 

Microarray gene expression-based cancer classification is one of

he most important tasks to a certain cancer prognosis. A typical
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Table 2 

Comparison of feature selection methods on seven microarray data sets. 

Selector Naive Bayes KNN CART Random forest 

Acc AUC Acc AUC Acc AUC Acc AUC 

MT1 

Relief 0 .923(7) 0 .955(7) 0 .883(7) 0 .946(7) 0 .91(7) 0 .961(6) 0 .944(7) 0 .955(6) 

FCBF 0 .958(6) 0 .974(6) 0 .944(6) 0 .953(6) 0 .925(6) 0 .954(7) 0 .956(6) 0 .949(7) 

mRMR 0 .961(4.5) 0 .982(4) 0 .953(4) 0 .968(5) 0 .934(5) 0 .968(5) 0 .958(5) 0 .958(5) 

SVMrfe 0 .965(3) 0 .983(3) 0 .962(3) 0 .973(2) 0 .94(2.5) 0 .975(3) 0 .966(3) 0 .962(4) 

JMI 0 .961(4.5) 0 .977(5) 0 .951(5) 0 .969(4) 0 .938(4) 0 .972(4) 0 .961(4) 0 .968(3) 

QPFS 0 .966(2) 0 .985(2) 0 .964(2) 0 .971(3) 0 .94(2.5) 0 .976(2) 0 .968(2) 0 .97(2) 

LM 0 .968(1) 0 .987(1) 0 .974(1) 0 .975(1) 0 .941(1) 0 .979(1) 0 .979(1) 0 .988(1) 

MT2 

Relief 0 .646(7) 0 .689(7) 0 .665(7) 0 .692(7) 0 .613(7) 0 .679(7) 0 .681(7) 0 .725(7) 

FCBF 0 .725(6) 0 .764(6) 0 .713(6) 0 .759(5) 0 .677(6) 0 .73(6) 0 .747(6) 0 .795(6) 

mRMR 0 .771(3) 0 .784(4) 0 .749(4) 0 .784(3) 0 .719(2) 0 .806(2) 0 .781(2) 0 .807(3) 

SVMrfe 0 .739(5) 0 .772(5) 0 .745(5) 0 .757(6) 0 .698(5) 0 .798(4) 0 .761(4.5) 0 .802(5) 

JMI 0 .748(4) 0 .786(3) 0 .755(2) 0 .786(2) 0 .701(4) 0 .788(5) 0 .761(4.5) 0 .806(4) 

QPFS 0 .792(1) 0 .806(2) 0 .751(3) 0 .76(4) 0 .704(3) 0 .801(3) 0 .763(3) 0 .814(2) 

LM 0 .786(2) 0 .817(1) 0 .756(1) 0 .791(1) 0 .723(1) 0 .816(1) 0 .788(1) 0 .817(1) 

MT3 

Relief 0 .815(7) 0 .823(7) 0 .856(7) 0 .872(6) 0 .797(6) 0 .839(6) 0 .832(7) 0 .86(7) 

FCBF 0 .827(6) 0 .835(6) 0 .857(6) 0 .865(7) 0 .789(7) 0 .832(7) 0 .851(6) 0 .864(6) 

mRMR 0 .859(5) 0 .871(4) 0 .874(2.5) 0 .878(3) 0 .83(2) 0 .858(2) 0 .869(3) 0 .882(4) 

SVMrfe 0 .875(1.5) 0 .878(3) 0 .874(2.5) 0 .886(2) 0 .822(4) 0 .855(3) 0 .878(1) 0 .891(2) 

JMI 0 .873(3) 0 .889(1) 0 .868(4) 0 .877(4) 0 .823(3) 0 .848(4) 0 .868(4) 0 .883(3) 

QPFS 0 .869(4) 0 .864(5) 0 .859(5) 0 .874(5) 0 .809(5) 0 .844(5) 0 .857(5) 0 .878(5) 

LM 0 .875(1.5) 0 .887(2) 0 .876(1) 0 .896(1) 0 .833(1) 0 .879(1) 0 .874(2) 0 .892(1) 

MT4 

Relief 0 .903(7) 0 .928(7) 0 .904(7) 0 .931(6) 0 .891(7) 0 .938(7) 0 .917(7) 0 .971(6) 

FCBF 0 .931(5) 0 .939(6) 0 .908(6) 0 .916(7) 0 .903(6) 0 .98(6) 0 .921(6) 0 .969(7) 

mRMR 0 .948(1) 0 .956(3) 0 .948(2) 0 .977(3) 0 .939(2) 0 .985(3.5) 0 .934(2) 0 .989(2) 

SVMrfe 0 .935(4) 0 .953(4) 0 .928(4) 0 .94(5) 0 .923(4) 0 .985(3.5) 0 .929(4) 0 .98(4) 

JMI 0 .939(3) 0 .964(2) 0 .94(3) 0 .995(2) 0 .929(3) 0 .992(2) 0 .93(3) 0 .986(3) 

QPFS 0 .915(6) 0 .943(5) 0 .917(5) 0 .961(4) 0 .908(5) 0 .981(5) 0 .923(5) 0 .972(5) 

LM 0 .946(2) 0 .966(1) 0 .958(1) 0 .998(1) 0 .946(1) 0 .994(1) 0 .94(1) 0 .992(1) 

MT5 

Relief 0 .718(7) 0 .76(7) 0 .744(7) 0 .779(6) 0 .731(7) 0 .808(7) 0 .738(6) 0 .786(6) 

FCBF 0 .77(6) 0 .795(6) 0 .777(6) 0 .726(7) 0 .751(6) 0 .84(5) 0 .73(7) 0 .775(7) 

mRMR 0 .834(3) 0 .883(2) 0 .803(1) 0 .87(2) 0 .835(3) 0 .869(3) 0 .846(3) 0 .892(1.5) 

SVMrfe 0 .831(4) 0 .865(4) 0 .791(4) 0 .853(4) 0 .793(5) 0 .839(6) 0 .814(5) 0 .851(5) 

JMI 0 .848(1) 0 .878(3) 0 .797(3) 0 .859(3) 0 .84(2) 0 .877(2) 0 .854(2) 0 .89(3) 

QPFS 0 .796(5) 0 .837(5) 0 .787(5) 0 .828(5) 0 .802(4) 0 .841(4) 0 .826(4) 0 .864(4) 

LM 0 .839(2) 0 .885(1) 0 .798(2) 0 .872(1) 0 .845(1) 0 .885(1) 0 .857(1) 0 .892(1.5) 

MT6 

Relief 0 .772(6) 0 .816(6) 0 .732(6) 0 .753(7) 0 .657(7) 0 .771(6) 0 .787(7) 0 .793(7) 

FCBF 0 .763(7) 0 .794(7) 0 .722(7) 0 .777(6) 0 .697(6) 0 .716(7) 0 .817(6) 0 .827(6) 

mRMR 0 .788(4) 0 .83(3) 0 .8(4) 0 .818(4) 0 .703(5) 0 .773(5) 0 .822(5) 0 .839(5) 

SVMrfe 0 .807(3) 0 .829(4) 0 .815(3) 0 .829(3) 0 .768(1) 0 .781(3) 0 .847(1) 0 .862(2) 

JMI 0 .785(5) 0 .818(5) 0 .792(5) 0 .813(5) 0 .712(4) 0 .776(4) 0 .842(3) 0 .855(4) 

QPFS 0 .814(2) 0 .837(1.5) 0 .823(2) 0 .841(2) 0 .733(3) 0 .784(2) 0 .832(4) 0 .857(3) 

LM 0 .817(1) 0 .837(1.5) 0 .825(1) 0 .849(1) 0 .743(2) 0 .786(1) 0 .846(2) 0 .873(1) 

MT7 

Relief 0 .913(6) 0 .928(6) 0 .888(7) 0 .968(6) 0 .84(7) 0 .948(7) 0 .922(7) 0 .93(7) 

FCBF 0 .904(7) 0 .914(7) 0 .942(3) 0 .978(2) 0 .871(5) 0 .949(6) 0 .936(5) 0 .942(6) 

mRMR 0 .942(2) 0 .957(2) 0 .945(2) 0 .973(3) 0 .875(2.5) 0 .967(2) 0 .945(2) 0 .976(2) 

SVMrfe 0 .924(4) 0 .95(3) 0 .923(6) 0 .967(7) 0 .875(2.5) 0 .956(3) 0 .935(6) 0 .973(4) 

JMI 0 .928(3) 0 .937(4) 0 .938(4.5) 0 .972(4) 0 .872(4) 0 .952(4.5) 0 .938(4) 0 .974(3) 

QPFS 0 .92(5) 0 .932(5) 0 .938(4.5) 0 .97(5) 0 .868(6) 0 .952(4.5) 0 .943(3) 0 .952(5) 

LM 0 .945(1) 0 .968(1) 0 .946(1) 0 .986(1) 0 .881(1) 0 .968(1) 0 .947(1) 0 .978(1) 
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characteristic of this type of data is high-dimensional and small

sample size. Because cancers are usually marked by changing in

the expression levels of certain genes, therefore it is obvious that

not all measured genes are discriminative genes. More importantly,

the situation is likely to render the risk of overfitting and easy

to increase the computational burden of processing. These pose

great challenges to constructing an efficient classifier for predic-

tion. Hence, feature selection(or gene selection) problem is ubiqui-

tous in cancer classification. 

To assess the performance of the proposed method, we conduct

the experiments on a number of real microarray gene expression

data sets which are described in detailed in Table 1 . We have col-
(  
ected these data sets in our previous work [43] and they are freely

vailable at https://github.com/sqsun/kernelPLS-datasets . 

.3. Results and analysis 

In this section, we conduct the experiments on seven microar-

ay gene expression data sets ( Table 1 ) to show the effective-

ess of the proposed method (LM). In order to show the fea-

ure selection methods which are classifier-independent in evalu-

tion process, we use four classification methods, including CART

minparent = 15), Naive Bayes (”kernel” distribution), KNN( k = 5)

nd Random Forest (ntree = 100), to train the classification model

 Fig. 1 ). To obtain statistically reliable results, two evaluation cri-

https://github.com/sqsun/kernelPLS-datasets
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Table 3 

Friedman test for the comparison of LM with other feature selection methods with respect to each criterion 

(Acc or AUC). 

Naive Bayes KNN CART Random forest 

z p -value z p -value z p -value z p -value 

Acc 

Relief.vs.LM 4 .516 6.31E −06 4 .949 7.47E −07 4 .949 7.47E −07 4 .825 1.40E −06 

FCBF.vs.LM 4 .021 5.80E −05 3 .959 7.53E −05 4 .206 2.59E −05 4 .083 4.45E −05 

mRMR.vs.LM 1 .485 0 .138 1 .423 0 .155 1 .670 0 .095 1 .608 0 .108 

SVMrfe.vs.LM 1 .732 0 .083 2 .412 0 .016 1 .979 0 .048 1 .918 0 .055 

JMI.vs.LM 1 .608 0 .108 2 .289 0 .022 1 .979 0 .048 1 .918 0 .055 

QPFS.vs.LM 1 .794 0 .073 2 .289 0 .022 2 .536 0 .011 2 .103 0 .035 

AUC 

Relief.vs.LM 4 .763 1.91E −06 4 .701 2.59E −06 4 .825 1.40E −06 4 .763 1.91E −06 

FCBF.vs.LM 4 .392 1.12E −05 4 .083 4.45E −05 4 .578 4.70E −06 4 .639 3.49E −06 

mRMR.vs.LM 1 .670 0 .095 1 .979 0 .048 1 .918 0 .055 1 .856 0 .063 

SVMrfe.vs.LM 2 .165 0 .030 2 .722 0 .006 2 .289 0 .022 2 .289 0 .022 

JMI.vs.LM 1 .794 0 .073 2 .103 0 .035 2 .289 0 .022 1 .918 0 .055 

QPFS.vs.LM 2 .103 0 .035 2 .598 0 .009 2 .289 0 .022 2 .289 0 .022 
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eria including Accuracy (Acc) and area under receiver operating

haracteristic curve (AUC) are used to measure the performance of

ach feature selection method. In training phrase, we take 50 trials

n total. 

The feature selection methods we compared in the experiments

re, Relief, FCBF, JMI, mRMR, SVMrfe, and QPFS. For QPFS, we set

arameter alpha as 0.75, the number of segments for discretiza-

ion as 5, and the rate of sub-sampling in Nystörm method as 0.2.

he parameters of the remaining methods are used with default

ettings. 

The iterative feature selection methods strongly rely on the or-

er of features which are incorporated. Therefore, we will show

he stability of feature selection methods first. It is expected that

he features selected by global feature selection method are more

table than iterative search methods. Without loss of generality,

e use MT1 data set here. The experiment is conducted over 50

rials and top 10 features are considered for each method. The x -

xis represents the feature index from 1 to 7129 (the total num-

er of features is 7129) and the y -axis shows the 50 trials. For

ach trial, if the feature is selected, we plot a point at the cor-

esponding position. The more complete vertical lines the method

as, the more stable it is. As expected, from the Fig. 2 , we can

ee that the features selected by LM are clearly the most stable

ethod against the other methods. The second-best and third-best

s mRMR and JMI, respectively. However, Relief, FCBF and SVM-

fe show the poorer stability than the others. It should be noted

hat the good stability of methods does not mean to be high per-

ormance in evaluation criterion of classification (i.e., Acc or AUC)

 Table 2 ) . 

Next, we will show the performance of the feature selection

ethods based on four classification methods and two popular

valuation criteria (Acc and AUC) which are widely used in this

led [30,33] . Previous studies have investigated that the number of

mportant genes probably about 50 [17] . To guarantee there are no

mportant genes missing, in the current study, we consider the top

00 features except FCBF because the number of features selected

y FCBF is unfixed. With respect to a classifier and a criterion, we

lso rank the performance for the feature selection methods ac-

ording to the value they achieved ( Table 2 ). The method with the

ighest performance of classification will have rank 1, while the

orst performance will have rank 7. As shown in Table 2 , we no-

ice that LM method obtained better performance than the other

eature selection methods for most data sets. 

To obtain statistical validation of the results in our experiments,

e also use Friedman test [13] to summary the results for fea-

ure selection methods over multiple data sets. Friedman is a non-

[  
arametric test, which is a promising way to evaluate the perfor-

ance of methods over multiple data sets [10,11,14,15] . The test

tatistics z for comparing the i -th feature selection method and j -th

eature selection method over multiple data sets can be calculated

y the following equation [10,15] 

 = 

(
R i − R j 

)
SE 

. 

here R i (or R j ) is the average rank for i -th (or j -th) feature selec-

ion method. SE is the standard error in the pairwise comparison

etween two feature selection methods. In our case, it can be cal-

ulated by SE = 

√ 

n f (n f +1) 
6 ∗nd 

= 

√ 

7 ∗8 
6 ∗7 = 1 . 115 (here nf and nd are the

umbers of feature selection method and data sets, respectively).

he z value is used to calculate the corresponding p -value from

he table of normal distribution N (0 , 1) . Then we can make deci-

ion with appropriate level of significance α. 

For each criterion (Acc or AUC), we compare the LM with other

eature selection methods based on four classifiers (Naive Bayes,

NN, CART, and Random Forest). As shown in Table 3 , for FCBF

nd Relief, we can safely reject their null hypothesis H 0 (there is

o difference between two feature selection methods) with signif-

cance level α = 0 . 05 . For SVMrfe and QPFS, we can not reject the

 0 with α = 0 . 05 when we use Naive Bayes classifier but we can

eject the H 0 when we use other three classifiers (KNN, CART, and

andom Forest). The competitive methods are mRMR and JMI. Al-

hough we can not reject the null hypothesis H 0 of mRMR and JMI

ith significance level α = 0 . 05 , the probabilities are quite small

the largest p -value is 0.155). These results are also consistent with

he previous work [6] . Therefore, we can conclude that our method

s a reliable method for feature selection problem. 

. Discussion and conclusion 

In this article, an optimization model-based global feature se-

ection method is proposed. Compared with QPFS method, our

ethod does not need to consider the positive definiteness of

orrelation kernel matrix. We only need a symmetrical matrix

n model, and it is easy to be satisfied by the transformation

K 

T + K 

)
/ 2 if K is asymmetrical. Another trick in our work is us-

ng Lagrange multipliers to select features according to their mag-

itudes inspired from its practical applications. To our knowledge,

t is the first time that the Lagrange multiplier is used to select the

iscriminative features. The results demonstrate that our method is

 reliable feature selection method. 

There are also several challenges in feature selection problem

5] . In future work, we will focus on two directions for this prob-
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lem. On the one hand, convex optimization for feature selection

problem has been attracted considerable attention in recent years

[4,27] . An interesting line of future work is to develop an effi-

cient and effective algorithm for mathematical model, especially

for microarray data analysis they are always involving the large-

scale matrix in the model. On the other hand, it is well-known that

the drawback of filter methods is how to determine the threshold

value in selection process. In our case we only select the top 100

features according to their score. In general, the sparse model are

usually adding some constraints (prior distribution) in model to re-

sult in sparse coefficients, such as least absolute shrinkage and se-

lection operator(LASSO) [44,49] . How to add some constraints to

obtain the sparse solution of dual problem, i.e. sparse Lagrange

multipliers, is an interesting direction. 
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